
                              Nalanda Open University                                                                                      
                                                                    M.Sc. Part- I 

Course- Mathematics 

Paper- 1 (Advanced Abstract Algebra) 

Prepared by – DR. Lalit Kumar Sharan 

Rtd. Professor and Head 

Department of Mathematics, 

V.K.S. University, Ara 

 

Unit 5 (GALOIS GROUP): 

Contents: 

1. Automorphism 
2. Automorphism of Fields 
3. Equality of two Automorphism  
4. Fixed Field  
5. Normal Extension of a Field  
6. Galois Group 
7. Finite Field 
8. Conjugate elements 
9. Prime Field 
10. Normal Extension 
11. Separable Polynomial 
12. Separate Extension 
13. Galois Field 
14. Cyclotomic Field 
15. Primitive nth root of unity  
16. Solvable by Radicals 
17. Pure Equation and Extension 
18. Normal Radical Tower 
19. Solvability by Radicals of Cyclotomic 
20. Solved Examples 

 
 
 
 
 



Section 1. 
 
Automorphism And Group of Automorphism in previous Studies  
 
1.1 We have already developed the concept of automorphism in previous studies. 
1.2 Definition: 

 
Automorphism of Field: Let F be a field then a mapping f:F→ F is called an 
automorphism of F iff : 
 

(i) f(a+b) = f(a) +f(b) 
(ii) f(ab) = f(a)*f(b) for every a,b ∈F 
(iii) f is one-one, onto 

 

Equality of two Automorphism of Fields:  

Two automorphism f and g of fields are said to be equal if f(a) =g(a), for every a in F. 
Otherwise f and g are called distinct i.e; when f(a) ≠g(a) for some a ∈ F. 

Fixed Field: If G is the group of all automorphism of  field K ( of characteristic 0 ), then the fixed 
field of G is the set of all elements a ∈K such that f(a) = a for all f in G. 

Group of Automorphism of a field K: Let K be a field of characteristic O and let F be a subfield of 
K. Then the group of automorphism of K relatives to F, denotes as G ( K, F) is the set of all 
automorphism of K leaving every element of F fixed, that is the automorphism f of K is in G (K,F) if 
and only if f (α) = α for every α ∈ F. 

 

Normal Extension of A Field: A field K is normal extension of a field F if K is a finite extension of F 
such that F is the fixed field of G ( K, F).  

Theorems: 

 

Theorem1.3 (i): The fixed of G is a subfield of K, where G is the group of all automorphism of a field 
K. 

Proof: Let a and b be any two elements of the fixed field of G. Then for all f in G , f (a)= a, f(b)=b 
implies f (a±b) = f(a) ± F(b) = a ±b 

Also, f (ab)= f(a)f(b)=ab 

Thus a…b, ab is again in the fixed field of G.  

If b≠0 then f (b-1) =(f(b)) -1  = b-1   is also in the fixed field of G. 

Thus the fixed field of G is a subfield of G. 



 

Theorem 1.3(ii) : 

 

Let A(F) be the collection of all automorphism of a field F. Then A(F) is a group with respect to the 
composition operation of two functions. 

 

Proof: Since A(F) =the collection of all automorphism of a field F. 

Let f, g∈ A(F) implies that f, g are one-one, mapping of F onto itself Implies that gf : F on to itself . 

Also, Let a, b∈ F then  (gf) (ab)= g(f (ab)) =g[ f(a) g(b)] g (f(a)) * g (f(b))= (gf (a)) ( gf(b)) 

Also, (gf) (a+b) = g (f(a+b)) =g(f(a)) +f(b)) =g  (f(a)) +g (f(b))= gf (a). g(f (f)) 

Thus gf is an automorphism implies that gf ∈ A( F) implies that  A(F) is closed under the given 
operation. 

We know that the composition of arbitrary mapping is associative. Thus the composition of 
Automorphism is also associative. 

Further clearly the identity mapping I of F is an automorphism of M. 

Also, I is one on one onto and for a1b in F 

I (ab) =ab = I (a) I(b) and I (a+b) =a+b= I(a) +I(b) 

Thus I ∈A(F) and for any f ∈A(F), If=f I=f 

Thus, the existence of identity element. Finally we have to show the existence of inverse: 

For this, Let f ∈A(F) implies that f is one -one-onto implies f-1 (the inverse of f) exists. 

Also, f-1   is one -one-onto.  

Let a, b ∈F then ∈ a’, b’ in F such that f-1 (a)= a’ iff f(a’) = a and f-1 (b)= b’ iff f(b’) = b 

Then f-1 (ab) =  f-1  [f(a’) . f(b’)] = f-1  [f(a’. b’] =a’ b’ = f-1 (a) f-1 (b) 

And f-1  (a+b) = f-1   {f (a’) + f(b’)} = f-1  { f(a’ +b’) } = a’ +b’ = f-1  (a) + f-1 (b) 

Thus f-1 is also an automorphism of F implies f-1 ∈ A (F) 

But f is arbitrary. 

Thus, for every f ∈A(F) implies that f-1 ∈A(F) 

Thus A(F) satisfied all the condition to be a group. 

Therefore A(F) forms a group under the given composition. 

 

 



Theorem 1.3(iii)  

 

Let K be a field. If ψ1, ψ2, …., ψn are distinct automorphism of K, then we cannot find elements a1, a2, 
..an not all zero in F such that; 

 

a1ψ1 (u)+ a2ψ2 + ….+anψn (u) =0, for all a ∈ K. 

 

Proof: If possible, let for a moment we find elements a1, a2, …., an not all zero in F. 

Such that a1 ψ1 (u) +a2 ψ2 (u)+….+ am ψm (u) =0 for every u in F…………………………… 1 

If m=1 then (1) takes the form of a1 ψ1(u) =0 for every u ∈ F. 

 Since a1 ψ1 (u) = 0 for u in F implies that a1 ψ1 (1)=0,  1 ∈ F implies that a11=0 implies that a1=0 

which goes against our assumption: 

 

Hence, we have n> 1. 

Since ψ1 ≠ ψm implies that ∃ a. c ∈F such that ψ1(c) ≠ ψm (c) 

Also u, c ∈F implies that u.c ∈F implies that 1 holds good for uc 

implies that a1 ψ1 (cu) + a2 ψ2 (cu) +…..+ am ψm (cu)  = 0  for u in F 

implies that a1 ψ1 (c) . ψ1 (u) + a2 ψ2 (c) . ψ2 (u) +…. + am ψm (c) ψm (u) =0 for u in F…………………  2 

From 1 and  2 together we see that : 

a2 [ ψ2 (c) - ψ1 (c) ] ψ2 (u) +…+ am [ ψm  (c)  - ψ1 (c) ] ψm  (u)  = 0 …………………….. 3 

 

Let v1 =  ai { ψi (c) - ψ1 (c)} for i= 1,2,…..,m. 

Now since ai , ψi (c), ψ1 (c)  are all in K implies that each vi is in F. 

And vm  = am  [ ψm  (c) – ψ1  (c)] ≠ 0 

Thus  from (3), we get v2 ψ1 (u) +…..+ vm ψm (u )= 0 , for every u in K ………………….. 4 

Since 4 contain (m-1) terms and vm ≠0 so from 4 , we can find a  relation of the type , a1 ψ1 (u)  + a2 
ψ2 (u) +….+ an ψn (u) = 0, for u ∈ K containing less than m non zero terms which contradicts the fact 
that 1 is minimal relation . Thus the theorem is observed. 

 

 

 



 

Theorem 1.3 (iv) 

Let K be a sub field of a field F. Let G (F, K) be the set of all those automorphism of F which leaves 
every element of K fixed, that is, the automorphism f of F is in G ( F, K) if and only if f (α) = α, for 
every α  in F. Then G ( F,K) is a sub group of the group of all automorphism of F. 

 

Proof: Let I be the identity automorphism of F. 

Then I ∈ G (F, K) implies that G ( F,K )≠ Φ 

Also, I (α) = α, for every  α ∈ K 

Let f,g ∈ G ( F, K) then for α in K , f (α) = α, g (α) = α implies that f-1 (α) = α , g-1   (α) = α 

Also (g f-1  ) (α) = g( f-1 (α) ) =  g (α) =  α implies that  G( F, K) is a sub group of  the group of all 
automorphism m of F. 

 

Theorem 1.3 (v) 

Let K be normal extension of a field F of characteristic O. Then [ K:F] = 0 [ G(K, F)] 

Proof : Let F be a field  of characteristic 0 

Also let K be a normal extension of F. 

But then the fixed field of G ( K, F) is F itself . 

We also know that normal extension implies finite extension implies K is a finite extension of F. 

By a theorem we know that if K be a normal extension of a field F, H be a sub group of G ( K, F). KH= [ a ∈ 
K :  Ψ (a) = a, ∀ Ψ ∈ H] then : 

(i)  ][ K; KH] = 0 (H) and  
(ii) H= G (K, KH) 

So we take H = G [ K, F] we can have KH = the fixed field of G [ K,F] = F1 

Therefore 0 [ G( K, F)] = [ K : F]  

 

Theorem 1.3 (vi) 

Let K be the splitting field of f(x) ∈ F[x] and let p (x) be an irreducible factor of f(x) in F[x]. If the roots 
of p(x) are α1, α2,…αi then for each I, there exists an automorphism Ψi in G [K,F] such that Ψi ( α1) = αi 

 

Proof: Since its given that K is the splitting field of f(x) ∈ F[x] 

And p(x) is an irreducible factor of f(x) ∈ F[x] 



Hence every root of p(x) is a root of  p(x) implies p(x) ∈ K 

Let F1 = F (α1) and Fi = F (αi), α1, αi are roots of p(x) 

Again since p(x) is irreducible in F [x], so we can get an isomorphism  ∅:F (α1) → F (αi) such that ∅ (αi) = (αi) and 

∅ (a) = a, for a is in F. 

 

Also F ⊆F1 implies that if f(x) ∈ F(x) then f (x)  ∈ F1 [x]  

It means K is splitting field of f(x) ∈ F1 [x] 

Similarly, K is the splitting field of f(x) ∈ F1 [x] 

Thus we shall get an isomorphism Ψ1 : K →K such that Ψ1 (a) = ∅(a), a ∈ F1 

But F1 = F (α1) , hence α1 ∈ F1 

Then we have Ψi ( α1) = ∅ (α1) = αi 

Thus Ψi coincides with ∅ on F1 and hence on F implies Fi (α) = α ,  α ∈ F. 

Therefore Ψi  ∈ G [ K, F]. 

Section- 2  

GALOIS GROUP, Finite Fields 

 

2.1 Introduction:  

The theory of Galois gives a decent and useful interplay of group and field theory. Equivalently we can say 
that this theory is an excellent composite of the theory of groups with the theory  

Of algebraic field extensions. It also play a vital role in the theory of equations. 

2.2 Definitions:  

 Galois group – Let K be a finite extension of a field F. The group G [F,K] of all F automorphism of K is known 
as Galois group of K  over F. Here, K is popularly called Galois extension of F. 

Conjugate elements - Let K be the finite extension of a field F. Then any two elements α,  
β in K are said to be conjugate over F, if they have the same minimal polynomial over F. 

Finite Field : A field F having only a finite number of elements is known as finite field.  

Prime Field: A field F is called prime if it has no proper subfield. 

Normal extension: Let K be an algebraic extension of the field F. Now if the splitting field of the minimal 
polynomial f(x) in F [x], for each element of K is the splitting field of some polynomial over F. 

Separable polynomial: Let f(x) in F [x] be an irreducible polynomial. Now if f (x) has no multiple roots in it’s 
splitting field then f(x) is called separate over F.  Clearly the roots of f(x) in it’s splitting field are simple. 

Separable Element: Let K be an algebraic extension of F. An element α ∈ K is called separable over F if the 
minimal polynomial or α over F is separable otherwise it is called inseparable element.  



Separable Extension: An algebraic extension K of a field F is called separable extension of F of every element 
of K is separable over F. 

 

 

Theorems 

Theorem 2.3 (1)  

An element of K which remains invariant under each member o the group G ( K,F)  of K over F is necessarily a 
member of F.  

Proof: Let α ∈ K be arbitrary. Also α remains invariant under every member of Ψ ∈G (F,K) implies Ψ(α) = α, 
for each α in K , our problem is to show that α is in F and Ψ ∈G (K,F). For this, As G (K,F) is Galois  group  
implies that  K is finite normal extension of K itself  implies that K is the splitting field of some polynomial f(x) 
in F[x].  

Let p(x) be the minimal polynomial of α over F. 

Also, since K is normal over F and one root of α over F. Also, since K is normal over F and one root of α of p(x) 
in K. 

Thus, each root of p(x) will be in K. 

Let a polynomial F(x) p (x) ∈ F [x] implies K is splitting field of F(x) p(x). 

If possible, let for a moment deg. p(x) ≥2 

Thus, K is separable also over F and all roots of p(x) will be distinct. Hence we shall get an element β⊆ K 
where β ≠ α, β is a root of p(x) over F. 

It means α ≠ β and α1 β are roots of irreducible polynomial f(x) ∈ F[x] 

Hence we shall get a F- isomorphism Ψ : F(α) → F (β) such that Ψ (α) = β 

Thus, Ψ can be contained to an F – automorphism of K 

But then there exists Ψ in G (K, F) which maps α on β, β ≠ α 

Thus, we arrived at a contradiction.  

Thus, deg. p(x) is not greater than or equal to 2. So deg p(x) =1 so p(x) = x- α, α ∈ F as p(x) ∈ F[x] and p (α) =0 

 

Theorem 2.3 (ii): 

Let K be a finite normal extension of a field F. If α, β be any two elements of K conjugate over F, then there 
exists an F- automorphism Ψ of K such that Ψ(α) = β 

 

Proof: Let K be the finite normal extension of the field F. 

Clearly K is the splitting field of polynomial f(x) in F [x].  

Given α, β are conjugate over the field F. 

Hence α, β have the same minimal polynomial over F. 

Also α, β are algebraic over F. So we get an isomorphism θ : F (α)→F (β) , given by θ (α)= β 



But then K is the splitting field of f(x) over F (α), F (β) as FCF (α),  FCF(β), α, β∈ K. 

So we shall get an automorphism Ψ of K which is an extension of θ 

Now Ψ(α) = θ (α) = β and for any element p in F, we have Ψ(ρ) = θ (ρ) = ρ 

Thus Ψ is an F- automorphism of K such that Ψ(α)= β. 

 

Theorem 2.3 (iii) 

The order of the Galois group G (K, F) is equal to [ K:F ] 

Proof: Let K be a finite separable extension of  a field F. Thus K is simple extension of F. So we can 
get an α in K such that K= F(α) 

Let p(x) be a minimal polynomial of α over F and deg.p(x) = n, Hence [ K:F]= n. 

As per assumption K is separable over F, hence roots of p(x)= 0 are simple. 

Let these roots be α= α1, α2,…,αn 

Since deg.p(x) =n implies that α1, α2, .. ,αn are all distinct. 

Let each F- automorphism of K maps α to another root of p(x). 

Thus clearly k= F(αi) for i= 1,2,3,..,n. 

We also know that F- mapping which maps α1 and αi actually determines a F- automorphism Ψi of 
F (α1) on F (αi) such that Ψ(α1) = αi 

Also, each Ψi is unique because αi generates K over F. 

Thus the Galois group G (K,F) contains Ψ1, Ψ2, …, Ψn 

Hence 0 (G (K , F)) =n= [K:F] 

 

Theorem 2.3 (iv) 

Let K be a finite separable, normal extension of a field F of characteristic zero, then the fixed field of 
Galois group G, ( K,F ) is F itself. 

 

Proof: 

We know that every finite separable extension is a simple extension. By question K is finite 
separable extension so as a result of which K is simple extension of F. Then k= F (α), α ∈ K. 

Let p (x) is in F[x] and p(x) is a minimal polynomial of α. Also, assume E is the splitting field of p(x). 

Also, splitting field of every polynomial over F is K as K is normal extension of F. Hence E ⊆ K…………………1 

Also α ∈ E, as E is the splitting field of p(x) such that p(α) =0 

Also α ∈ E implies F(α) ⊆ E implies K⊆E  [as K=F (α)] ………………….. 2 

From 1 and 2  E=K  implies K is the splitting field of the minimal polynomial p(x) of  α. 



Now if deg. p (x) =n, then [K:F] =n  

Let α = α1, α2, α3,….., αn be the conjugate  of  α over F. 

Then K= F (αi) for i=1, 2,…,n 

 

Also, for each I we can get F- automorphism …. Of K such that Ψ (α1) is conjugate of α1 

Hence Ψ1, Ψ2, ….., Ψn are contained in G (K, F) 

Let T be the fixed field of G( K,F) then [ K,T] = 0 (G(K,F)) 

Which shows the fact that F itself is the fixed field under G(K,F) = n= [K:F] implies that T = F 

Which shows the fact that F itself is the fixed field under G( K, F). 

 

Theorem 2.3 (v) : 

 

Let F be a finite field with q elements and suppose F⊆K , where K is also a finite field , then K has 
elements  qn where  n = [ K:F ] 

 

Proof: 

Since we can regard every field as a vector space over a subfield. Thus we can retard K as a vector 
space over the field over F. 

Also the number of elements in K is finite. 

Hence the vector space k (F) is finite dimensional.  

Let dim. K (F) =n implies that [K:F] = n 

For a moment, Let the set {b1, b2, …..,bn} be a basis of vector space  k(F). 

But then we can uniquely express every element of K in the form a1b1 + a2b2+ …+anbn where each ai 

is in F. Implies that the number of elements in K = the number of the terms in the linear 
combination a1b1 +…+anbn . 

Because xq – x ∈Ip (x) range over F. 

Finally, F has q elements, so each of the n coefficients a’s can have q values. 

Therefore, K have qn   elements. 

 

Theorem 2.3 (vi): Any two finite fields having the same number of elements are isomorphic.  

Proof: Let F be a finite field of characteristic P. 

Also let Ip = field of integers modulo P. 

We consider the polynomial xq – x ∈Ip (x) 



We show that F can be regarded as the splitting field of the polynomial xq – x ∈Ip (x). 

Since F is a field of finite characteristic p so it contains a subfield Fo isomorphic to the field Ip. 

So F can be regarded as an extension of the field Ip. 

Now if the number of elements In F=q then we have seen in our previous study xq =a,. a ∈F implies 
that a in F satisfies the polynomial xq – x ∈Ip (x).  

Clearly xq – x can have utmost q roots in extension field Ip. 

That is q elements of F are the roots of xq – x. 

Thus the polynomial xq – x ∈Ip (x) splits in the field F. 

But this polynomial can not split in any smaller field because that field must contain all the roots of 
this polynomial xq – x. Also roots of this polynomial are distinct.  

Thus F is the splitting field of xq – x ∈Ip (x).  

Further, Let F’ be an any other finite field having q= pn    elements.  

Thus continuing in the same way as we have done above , we can see that F’ is also the splitting field 
of xq – x ∈Ip (x) 

We also know that any two splitting fields of xq – x ∈Ip (x) must be isomorphic. 

Thus F’ ≅ F. That is F’ is equivalent to F. 

 

Section 3 
GALOIS FIELD 

3.1 Introduction: 

It is a field with a specific condition. 

3.2 Definition: 

Galois Field: Let p be any prime integer and n be an integer then a field with pn element is known as 
Galois field. It is denoted by GF (pn). 

3.3 Theorems: 

Theorem 3.3 (i): The multiplicative group of a Galois field is cyclic 

Proof: Let F be a finite field with q= pn elements and let F’ denote the set of q -1 non zero elements  
so that F’ forms a multiplicative group of finite order q -1 

That is 0(F’) = q -1 

Also elements of F’ are the roots of the polynomial f(x) = xq-1-1 

To show that F’ is cyclic 

Sufficient to show that ∃ an element of  F’ of order q -1 

Let us write q -1 = p1m1  , p2m2  , …….. prmr where pi≠ p and all pi are distinct primes. 



Let m= l.c.m { p1m1  , p2m2  , …….. prmr} 

Since F’ is finite so that the order of each element of F’ is finite. 

Let α be an element of F’ with 0 (α) =m 

Also, α ∈ F’ implies that α satisfies a polynomial f(x) = xq-1  -1 

Implies that αq-1  -1 = 0 implies that  xq-1  =1 implies that ∑ -1 divides m implies q-1=m (m ≤q-1) 

Implies that 0 (α) = q-1= o(F’). 

Thus F’ is cyclic. 

 

Theorem 3.3 (ii): 

 

Every finite field of characteristic p has an automorphism.  

Proof: Let F be a finite field of characteristic p. 

We consider a mapping Ψ : F→ F such that  Ψ (0) ap ∀ a in F 

Then we see that: 

For a b ∈ F then Ψ(a) = Ψ(b) implies that ap = bp    implies that ap- bp = 0 implies that  (a-b) ;.p  = 0 

(Since in a field of characteristic p, we have (a-b) p    = ap - bp ) 

Implies a-b= 0  

implies  a=b 

That is Ψ(a) = Ψ(b) implies a=b implies Ψ is one on one.  

Also, since the set F is finite and we have already proved that Ψ is one- one  so Ψ is onto. 

Finally, let a, b ∈ F, then we find that,  

Ψ( a+b) = (a+b) p    = ap + bp   (Since in a field of characteristic p, we have  (a+b) p    = ap + bp   ) 

= Ψ(a) + Ψ(b) 

Similarly Ψ( ab)  = (ab) p    = ap bp   =    Ψ(a) Ψ(b) 

Thus Ψ is an automorphism of the field F. 

 

 

 

 

 

 



Section 4 

Cyclotomic Field and solvability by Radicals. 

4.1 Introduction: The study of the above is in fact an advanced study of Galois group and its 
applications. 

4.2 Definitions: 

Cyclotomic Field: The splitting field xn-1   ∈ Q [x] which is contained in the field of complex numbers is 
known as nth cyclotomic field. 

Primitive nth roots of unity: Let F be a field. The roots of  xn-1   = 0  over F are known as the primitive 
nth roots of unity in its splitting field  if  Wn  = 1, but Wn  ≠1 for any positive integer 

Solvable by Radicals: Any field extension which can be reached through a finite series of 
successive pure extensions is known as solvable by radicals or radical tower. 

Pure Equation and pure Extension: The equation of the form xn-1-a =0 is called pure equation 
whereas an extension field F [ (a)1/n   ] is called pure extension of F. 

Solvable by Radicals over a field F:  Let F be a field and f(x) =0 is said to be solvable by radicals over 
F, if the splitting field K of f(x) is a tower of F. 

Normal Radical Tower:  However, K is a normal extension of F, then the tower is called normal 
radical tower over F. 

Solvability by Radicals of Cyclotomic Fields:  A group G of finite order is said to be solvable if their 
composition factors are prime. 

 

4.3 Theorems 

Theorem 4.3(i)  

(Fundamental theorem): 

Let F be a field of characteristic 0. Then, a polynomial f(x) in F[x] is solvable by radicals over F if and 
only if its splitting filed K over F has solvable Galois group G [K, F] 

Proof:  

Let G [K, F] be solvable. To prove f(x)= 0 is solvable by radicals. Let [K:F] = 0 [ G(K,F)] =n 

And F contains a primitive nth root of unity. Then clearly F contains primitive m th root of unity 
such that m/n. 

Let G= G( K, F)  and G is solvable and finite. 

So G= G0 ⊃ G1 ⊃…  ⊃Gs =1 is a chain of sub groups of  G such that  i= I,2,…, s and  Gi is a normal 
subgroup of  G i-1 and Gi-1/ G is cyclic.  

Let Fi is the fixed of Gi, then F=F0 ⊃ F1 ⊃F2 ⊃Fs = K ------------ 1 

If ni= [Fi/ Fi-1] , then ni/n , hence Fi-1 contains a primitive  ni th  root of unity.  

Also, Fi/ Fi-1  is cyclic because  G( Fi, Fi-1) is isomorphic to G i-1/ Gi. 



Implies Fi is Cyclic extension of Fi-1. 

Implies Fi is the slitting field of an irreducible polynomial xn-I   -  ai ∈ F i-1 (x)  

Also, Fi= Fi-1( αi), where αi is a root of  xni   -  ai = 0 

Implies that I is solvable by radicals over F and Fs is the splitting field of f(x) over F. 

Implies f(x)= 0 is solvable by radicals. 

Again let C be an algebraic closure o F such that K ⊆C. 

Let t be a primitive nth root of unity in C then C(t) is the splitting field of f(x) over F(t). 

Also, G [ C(t), K] is isomorphic to a subgroup of G. 

Also, G is solvable implies G[Ct), K] is solvable implies c(t) is radical extension of F(t). 

Implies C(t) is radical extension of F and hence f(x) is solvable by radicals. 

Conversely, Let f(x) = 0 is solvable by radicals. 

To prove G [K, F] is solvable. 

For this, As f(x) = o is solvable by radicals so we have a normal radicals tower of F such that  

F= Ko ⊆ K1 ⊆ K2 ⊆Kr over F, Kr contains a splitting field K of f(x) over F. 

Also Ki-1 (ai) = Ki and aini  = bi  ∈ Ki-1  for i= 1,2,…,r 

Let n=n1, n2….nr, t be primitive nth root of unity in some algebraic closure of F which contains Kr. 

Let Ei = Ki (t) for I =1, 2, …, r then F(t) = E0 ⊆E1 ⊆E2 ⊆Er is a normal radical  tower over  F(t). 

Again, We have Ei= Ei-1 (ai) and E i-1 contains nith root of unity. 

Thus Ei / E i-1 is cyclic. 

If Hi = G ( Er, Ei ), then G ( Er, F(t)) = Ho⊃Hi⊃…. ⊃ Hr = 1 and  H1/ Hi ≜ G (Ei, Ei-1) is cyclic then G ( Er, F(t)) is 
solvable . 

Again, we have G (Er, F(t)) ≜ G (Kr, Kr Ո F(t)) and F(t) is an abelian extension of F. Implies Kr Ո F(t) is an 
abelian extension of F. 

Thus G (Kr Ո F(t), F) is solvable 

Hence G (Kr, F) has a solvable normal subgroup G ( Kr, Kr Ո F(t)) ≜ G( Kr Ո F(t), F) 

Such that the factor group G ( Kr, F) / G (Kr, Kr ՈF(t)) ≜ G ( Kr Ո F(t), F) is solvable. 

Therefore, G (K, F) is solvable. 

Hence the if and only if conditions are well established.   

 

 

 

 

 



 

Theorem 4.3 (ii) 

 The Galois group xn -   1 over any field of characteristic zero is abelian.  

Proof: 

Let F be a field of characteristic 0. 

Again, let K be the splitting field of xn -   1 over the field F. 

Now if t is supposed to be a primitive nth root of unity then K = F(t). 

We also know that in every F- automorphism of K, t is mapped on ta and we determine such automorphism 
by its effect on t. 

Thus G (K, F) = [ Ψa- Ψa (t)= ta] 

Ψa, Ψb, ∈ G (K, F) then ( Ψa Ψb) (t) = Ψa (Ψb (t))=  Ψa (tb) = [Ψa(t)] b = [ta] b =  tab   = t ba = (tb) a 

= [Ψb (t)] a = Ψb(t) a = ( Ψa Ψb)t  implies that Ψa Ψb commute  implies G(K,F) is abelian. 

 

Theorem 4.3 (iii) 

 

For a prime integer p, the Galois group of  xp -1 over the prime field of characteristic zero is the cyclic 
group of order p-1. 

Proof: Let F be a prime field. Let also that the characteristic of F is 0.  

Since xp -1 = (x+1) Φ p (x). 

Obviously, the splitting field K of xp -1∈ F[x] is the same as that of 

Φp(x) = xp -1 + xp -2 +….+x +1 

Also, Φp(x) is irreducible over F. 

Now if t be a root of Φp(x) then t, t 2,…, t p-1  are (p-1) roots of Φp(x). 

Clearly all roots are distinct 

Thus if we define an automorphism given by Ψa(t) = ta then we can verify it easily that Ψa→ a is an 
isomorphism of the Galois group of automorphism of order p-1 with the group of p-1 integers 

1,2,3,…., p-1 for multiplication modulo p. 

Also, (Ψa Ψb) (t) = Ψa (Ψb (t))=  Ψa (tb) = [tb] a = t ba = Ψa Ψb→ab 

Hence the set {1,2,..,p-1} forms a multiplicative group of prime field Ip of characteristic p, which is cyclic 
of order p-1. 

 

 

 



 

Section 5 

 

Solved Examples: 

 

Example 1. ( 2016, 2017, 2019) Find the Galois group of the x3 -2 ∈ Q[x] over Q, the field of 
rational number. 

 

Solution: Let K be the splitting field of f(x) = x3 -2 over the field Q of rational numbers. The roots of f(x) are 
not all reals. 

Hence K may be considered as subfield of the field of complex number. 

Let α = 2 1/3   We must obtain K we first adjoin α to Φ 

In Q (α) [x], we have f(x) = (x- α) (x2 + αx + α 2) = (x- α) g(x) 

The field Q (α) is a real field and g(x) has no real root, so that g(x) is irreducible Q (α) [x]. 

The roots of g(x) are α ω and α ω 2…, where ω =   √  
  and ω 2 = 

  √   
 

Hence, K = Q (α, √3𝑖) 

We have [ K : Q ] = 6 and hence  O (G (K, Q)) = 6 

Thus, if we can find a distinct Q- automorphism of K, they will constitute all of G (K, Q) , one element of 
this group is its identity I. 

Again let, Ψ be the Q-automorphism of K which leaves a fixed and maps  √3𝑖 and - √3𝑖 

Let T be the Q – automorphism of K such that – 

T (α) = a.. , T(√3𝑖) = - √3𝑖 

Thus we have the following table which gives the image of α and √3𝑖  under indicative Q- automorphism 
of K. 

 1 Ψ T ΨT TΨ ΨTΨ 
Α Α α Αω αω2 αω αω2 

 
 
 

 

- √3𝑖 - √3𝑖 
  

- √3𝑖 

 

Thus, the Galois group of x3 -2 ∈ Q [x] is { I, Ψ, T,TΨ, ΨT, ΨTΨ} 

 

 

 



Example 2. (2018) 

 

The group G [Q (α), Q], where α 5  = 1 and α ≠1, is isomorphic to cyclic group of order 4. 

Solution: 

Since we have α 5 – 1 = 0 implies that (α- 1) (1+ α+ α 2 + α 3 + α 4) = 0 

Implies that 1+ α + α 2 + α 3 + α 4 = 1 implies that α is a root of polynomial. 

f(x) = 1+ x+ x2 + x 3 + x 4 ∈ Q [x]. 

Since f(x) is irreducible over Q, then [ Q (α) : Q ] = 4 

Also, all the roots of the polynomial g(x) = x 5 – 1 ∈ Q [x] are 1, α, α 2 , α 3 , α 4 

Thus Q (α) is normal extension of Q 

Hence O [ G Q (α), Q] = [ Q (α) : Q]  = 4 

This shows that, there are four Q- automorphism of Q (α). Since [ 1+ α + α 2 + α 3 ] is the  basis of Q (α) 
over Q, then Q (α) = [ a + bα + cα 2 + dα 3 : a, b, c, d ∈ Q] 

Let G (Q (α), Q) = [ Ψ1, Ψ2, Ψ3, Ψ4] with Ψ1 an identity automorphism.  

The four Q automorphism of Q (α) are as follows: 

Ψ1 (a + bα + cα 2 + dα 3) = a + bα + cα 2 + dα 3 

Ψ2 (a + bα + cα 2 + dα 3) = a + bα 2 cα 4 + dα  

Ψ4 (a + bα + cα 2 + dα 3) = a + bα 4 cα 3 + dα 2 

Clearly, [ Ψ1, Ψ2, Ψ3, Ψ4] forms a cyclic group of order 4 generated by Ψ2 and Ψ3. 

 

Example 3.(2018) 

Show that every element in a finite field can be written as the sum of two squares. 

Solution:  

Let F be a finite field of order p n. 

If p=2. De ine Ψ:2 → F given by Ψ(b) = b2 implies that clearly Ψ is one-one. 

Also since Ψ:F → F is one-one and F is finite  implies Ψ is onto. 

Also, Ψ (b1+b2) = (b1+b2) 2 = b12 + b22 = Ψ (b1) + = Ψ (b2) and Ψ (b1 b2) = (b1 b2) 2 = b12 b22 = Ψ (b1) Ψ (b2) 

Thus Ψ:F → F is homomorphism  

Since for a in F we get b in F such that Ψb = a implies a= b2= b2 + o2 = sum of two squares. 

Again, if p≠2 then Let a ∈ F,  x= [ a- x2 : x ∈ F ]  

Then a - x12= a- x22, xix2 ∈ F implies that x12 = x22 implies x1= - x2 if x1≠ x2 

Implies O (x) = pn- 1/ 2 + 1 = pn + 1/ 2 



Let Y = [ y2 : y∈ F] then proceeding in the same way as we have done above , we get  O (Y) =  pn + 1/ 2 

Therefore X, Y … F and O(F) = p n, XՈY≠Φ 

Thus a- x2 = y2, for some x,y∈ F implies a = x2 + y2= sum of two squares in F. 

 

Example 4. (2018) 

Show that the Galois group of x4 + x2 + 1 is the same as that of x6 – 1 and is of order 2.  

Solution: We know that the primitive nth root of unity is given by  

e2π i/n = cos 2π/n + I Sin 2π/n 

Also the primitive 3rd root of unity is given by e2π i/3 = cos 2π /3 + i sin 2π /3 = - ½ + i√3/ 2 

Let x2 = y then x4 + x2 +1= y2+ y+1 

But - ½  + i√3/ 2is a root of y2 + y + 1= 0 

Hence y2 + y + 1 is the minimal polynomial for a primitive 3rd root of unity. 

Thus the splitting field of x4 + x2 +1 will contain the square root of e2π i/3 and e4π i/3. Thus we need 
to adjoint.   

eπ i/3 = (e2π i/3) ½, e4π i/3 = - e π i/3  = - ( e2πi /3) ½,  e2πi /3 = ( e4π i/3) and e5π i/3 = - e2π i/3= - 
(e4π i/3) ½ 

From which K= Q (α), where α = x4 + x2 +1 over Q. 

Now α is  a primitive  sixth root of unity. 

Implies K is also  a splitting field of x6-1 over Q 

But then G( K, Q) = ( Z/ (6)) * = { T, F} is a group of order 2.  

 

Example 5: (2018) 

Let K be the splitting field of xn – a ∈ F[x]. Then show that  G(K, F) is a solvable group. 

Solution: Let a field F contains a primitive nth root of unity. Then as we already know that G(K,F) is 
abelian so it is solvable. We assume the case that F contains no primitive nth root of unity . 

Let t ∈ Fˉ and t is generator of the cyclic group of the nth root of unity. 

If α be a root of xn-a =0 then αt is also a root of it. 

It means t = α-1 (αt) in K and K is a splitting field of xn – a in F[x]. 

Let F⊆F (t) ∈ K implies F(t) is the splitting field of xn – 1. 

Hence G(K, F(t)) is a normal subgroup of G (K, F) 

Again since K is the splitting field of xn – a ∈ F[x] so that G( K, F(t))  is abelian. 



Then (e)  ⊆ G (K, F (t))  ⊆ G(K,F) serves as a normal series. Thus by the fundamental theorem of Galois 
theory , we have  G( K, F) / G( K, F(t)) ≡ G ( F (t), F) 

Now since G ( F(t), F) is abelian , so that G( K, F) has a normal series with abelian factors. 

 Hence G ( K,F) is solvable. 

Example 6: (2016) 

Find the splitting field K of polynomial x4 - x2 +1 over the field of rational numbers. Also 
determine the Galois group of K over Q.  Show that it is not a cyclic group.  

 

Solution:  

x4 - x2 +1= (x2 +1) 2 - 3x2 = {x+√3/2}2 + (1/2) 2} {(x-√3/2)2} + (1/2) 2} 

Thus, splitting field of x4 - x2 +1 over Q is given by Q (x√3 ± i/ 2) = Q (√3, i) = K 

Clearly, [ K:Q] = 4.  

Also, the given polynomial is irreducible over Q.  

Thus we can get p1, p2, p3, p4 ∈ G (K, Q) such that ,  

p1 (√3 +i/2) = (√3 +i/2); p2 (√3 +i/2) = (√3 - i/2), p3 (√3 +i/2) = -√3 +i/2, p4 (√3 +i/2) = -√3 - i/2 

Also for any p in G ( K, Q),  p (√3 +i/2) is a  root of given polynomial. 

Thus G (K, Q) = { p1, p2, p3, p4 } 

Clearly p1 (√3 - i/2) = √3 - i/2 

p1 ( -√3 - i/2) = (- 3 - i/2)  

p1 ( -√3 + i/2) = ( -  √3 + i/2) =  p1 ( -√3 + i/2) + (√3 - i/2) =√3 

Also, p1 (i) = i and p1 (i√3) = i √3 

Since {1, √3, i, i√3)  is a basis of  K and Q. So p1 = 1, the identity is morphism of K. 

Similarly, we can see that.  

p2 (√3) = -i√3 

p3 (√3) = i√3 

p4(√3) = i√3 

Also, p22 (√3)= √3 

p22(i) = p2 (-i) = i 

p22 (√3i) = p2 ( - i√3) = i√3 

Thus p22  =1 

Similarly, we can also see that each of p1, p2, p3, p4 is of order 2 while  G(K,Q) = { p1, p2, p3, p4} of 
order 4. Hence it is not a cyclic  group.  



 

Example 7: (217, 2019) 

 If K =Φ (√2), Φ is the field of Q then Φ is the field of the group of automorphism of K. 

 

Solution: Let Automorphism (K) = set of all automorphism of K such that K =Φ (√2)  

Now the minimal polynomial of √2 over Q is x2 -2 and { 1, √2} forms  a basis of K over Q implies that 
any n in K is of the form of a +b√2, where a1b ∈ Q.  

Let g be any automorphism of K such that  g(a) = a, for every a ∈ Q.  

Now g (√2) is conjugate of (√2) over Q. But √2 and - √2 are the only roots of x2 -2.  

Thus, we have g (√2) = (√2) or g (√2) = - √2 

Thus we consider two following cases: 

Case1.  Let√2 now p(x) = p(a+b√2) = p(a) p(b) p(√2)= a+ b√2 = x, x∈ K 

Thus p= 1, the identity map on K 

Case 2. Let p √2 = -√2 . Thus p(x) = p (a+b√2 ) + p(a) = p (b) (p√2 ) = a- b√2, each x∈ K 

Let this automorphism be donated by g. Thus (K) contains only two elements 1 and g 

Let F0 be fixed field under Aut (K) and let x ∈ F0 

Hence p(x) = x that is a-b√2 = a+b√2 implies b=0 

Thus x=a ∈ Φ 

Thus, F0 C Q. But Q is a prime field so Q ⊆ F0 

Hence F0 = Q  

Therefore, Q is the fixed field under automorphism (K). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 


