NALANDA OPEN UNIVERSITY B.Sc. Mathematics, Part-I PAPER-I (Honours)

(Set Theory, Matrices, Abstract Algebra, Theory of Equations and Trigonometry)

Annual Examination, 2022

Full Marks : 80

Time : 3 Hours.

3.

Answer **Five** questions in all, selecting at least one question from each group. All questions carry equal marks.

GROUP 'A'

- 1. (a) Define the Cartesian product of two non-empty sets *A* and *B* and prove that if *A*, *B*, *C* are any three non--empty sets then
 - $A \times (B C) = A \times B A \times C$ and
 - $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - (b) Define an equivalence relation on a non-empty set A and if R_1 and R_2 are any two equivalence relations on A then show that $R_1 \cap R_2$ is also an equivalence relation on A.
- 2. (a) What do you mean by a Lattice and a complete Lattice, Give one example of each.
 - (b) What do you mean by a partially ordered set. If X is any non-empty set then show that $(P(X), \subseteq)$ is a partially ordered set.
 - (a) If $f: X \to Y$ and $A \subseteq X$, $B \subseteq X$ then show that $f(A \cap B) \subseteq f(A) \cap f(B)$.
 - (b) What do you mean by a denumerable set. Prove that every infinite set has a denumerable subset.
- 4. (a) Show that a countable union of countable sets is countable.
 - (b) Show that the set *R* of all real numbers is uncountable.

GROUP 'B'

- 5. Find the rank of the matrix $A = \begin{bmatrix} 1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2 \end{bmatrix}$.
- 6. Solve by matrix method the following simultaneous equations. x+y+z=6, 2x+y-3z=-5, 3x-2y+z=2
- 7. (a) Prove that $A(\operatorname{adj} A) = (\operatorname{adj} A)A = |A|$ where A is n-rowed square matrix.

(b) Find the eigen values of the matrix. $A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix}$.

8. Show that $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ satisfies the equation $A^2 - 4A - 5I = 0$. Hence or otherwise find the

inverse of A.

GROUP 'C'

- 9. (a) Find the condition that the cubic $x^3 px^2 + qx + r = 0$ should have its roots be in Harmonic progression.
 - (b) The equation $3x^4 25x^3 + 50x^2 50x + 12 = 0$ has two roots whose product is 2i, find all the roots.
- 10. (a) Find the expansion of $\sin\theta$ is ascending powers of θ .
 - (b) State and prove Gregories series for expansion of $tan^{-1}x$ in ascending powers of x.
- 11. (a) Prove that if for every element 'a' in a group G, $a^2 = e$ then G is an abelian group.
 - (b) Prove that any two left or right cosests of a subgroup of a group G are either disjoint or identical.
- 12. (a) State and prove Lagranges Theorem.
 - (b) Prove that the intersection of two subgroups of a group G is also a subgroup of that group.

NALANDA OPEN UNIVERSITY B.Sc. Mathematics, Part-I PAPER-II (Honours)

(Differential Calculus, Integral Calculus and Analytical Geometry of Three Dimensions)

Annual Examination, 2022

Full Marks : 80

Time : 3 Hours.

Answer **Five** questions in all, selecting at least one question from each group. All questions carry equal marks.

GROUP 'A'

1. (a) State and prove Maclaurin's theorem.

(b) Prove that
$$\log(1 + \sin x) = x - \frac{x^2}{2} + \frac{x^3}{6} - \frac{x^4}{12} + \dots \infty$$

2. (a) If
$$v = \tan^{-1}\left(\frac{x^2 + y^2}{x - y}\right)$$
 then show that $x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} = \sin 2v$.

- (b) State and prove Euler's theorem for Homogeneous function of two independent variables *x* and *y* of degree n.
- **3.** Evaluate the following limits.

(a)
$$Lt_{x\to 0}\left(\frac{\tan x}{x}\right)^{\overline{x^2}}$$
 (b) $Lt_{x\to \frac{\pi}{2}}(\sin x)^{\tan x}$

- 4. (a) Show that the normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ touches the curve $(ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$
 - (b) Find the pedal equation of the curve $r^n = a^n \sin(n\theta)$.
- 5. (a) State and prove Leibnitz's theorem.
 - (b) If $y = \sin(m \sin^{-1} x)$ then prove that : $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0.$ **GROUP 'B'**
- 6. (a) If $I_{m,n} = \int \cos x \sin^n x \, dx$ then show that $(m+n) I_{m,n} = \cos^{m-1} x \cdot \sin^{n+1} x + (m-1) I_{m-2,n}$
 - (b) Evaluate $lt_{r\to\infty} \sum_{r=1}^{n} \frac{r^3}{r^4 + n^4}$.
- 7. Evaluate any *Two* of the following :-(a) $\int \frac{d\theta}{(a^2 \sin^2 \theta + b^2 \cos^2 \theta)^2}$ (b) $\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$ (c) $\int \sqrt{\sec x + 1} dx$
- 8. Evaluate

(a)
$$\int_{0}^{1} \frac{\log(1+x)}{(1+x^2)}$$
 (b) $\int_{0}^{\pi} x \log(\sin x) dx$

- 9. Find the area between the curve $x(x^2 + y^2) = a(x^2 y^2)$ and its asymptote. Also find the area of the loop.
- 10. Find the volume formed by the revolution of the loop of the curve $y^2(a-x) = x^2(a+x)$.

GROUP 'C'

- 11. (a) Find the angle between two lines whose direction cosines (l_1, m_1, n_1) and (l_2, m_2, n_2) respectably
 - (b) Find the equation of the plane cutting off intercepts a, b, c from the axes.
- 12. Show that $3x^2 + 4y^2 + 5z^2 6yz 4zx 2xy = 0$ represents a pair of planes.

NALANDA OPEN UNIVERSITY B.Sc. Mathematics, Part-I, PAPER–I (Subsidiary) Annual Examination, 2022

Time : 3 Hours.

Full Marks : 80

Answer any **Eight** questions in all, selecting at least one question from each group. All questions carry equal marks.

GROUP 'A'

- 1. (a) If *a* and *b* are any two elements of a group G, then prove that the equation ax = b and ya = b have unique solution in G.
 - (b) If G is group then prove that $(ab)^{-1} = b^{-1}a^{-1} \forall a, b \in G$.
- 2. Prove that the set *Pn* of all permutations on *n* symbols is a finite non-abelian group of order *n* with respect to composition of mappings as the operation.
- 3. What do you mean by an equivalence relation on a set *A*. If R_1 and R_2 are two equivalence relations on *A* then show that $R_1 \cap R_2$ is also an equivalence relation on *R*.
- 4. (a) Define Reflexive, Symmetric and Transitive relations giving one example of each.
 - (b) Define the Cartesian product of two non-empty sets *A* and *B*. If *A*, *B*, *C* are three non-empty sets then prove that $(A B) \times C = A \times C B \times C$.

GROUP 'B'

- 5. Prove that the sequence whose n^{th} term is $(\sqrt{n+1} \sqrt{n})$ is convergent.
- 6. Prove that a monotonic increasing sequence which is bounded above is convergent.
- 7. Prove that every convergent sequence is bounded.
- 8. Show that the sequence (x_n) where

$$x_1 = 1, x_n = \sqrt{2 + x_{n-1}}$$
 is convergent and it converges to 2.

- 9. Find $(1+i)^{\frac{1}{3}}$?
- 10. Reduce $(\alpha + i\beta)^{x+iy}$ in the form of A + iB.
- 11. State and prove De-Moivre's theorem.

GROUP 'C'

12. Evaluate:

(a)
$$Lt_{x\to 0}(\cot x)^{\left(\frac{1}{\log x}\right)}$$
 (b) $Lt_{x\to 0}\frac{x\cos x - \log(1+x)}{x^2}$

- 13. If $y = \tan^{-1}x$ then prove that: $(1 + x^2)y_{n+2} - (2n + 1)xy_{n+1} - n^2y_n = 0.$
- 14. Apply Maclaurin's theorem to expand $e^{x \sec x}$ as far as the term containing x^3 .
- 15. (a) Give the geometrical meaning of scalar triple product of three vectors *a*, *b*, *c*.
 - (b) Prove that : $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$.
- 16. (a) Prove that the two spheres: $S_1 \equiv x^2 + y^2 + z^2 + 2u_1x + 2v_1y + 2w_1z + d_1 = 0 \text{ and}$ $S_2 \equiv x^2 + y^2 + z^2 + 2u_2x + 2v_2y + 2w_2z + d_2 = 0$

cut each other orthogonally if $2(u_1u_2 + v_1v_2 + w_1w_2) = d_1 + d_2$.

(b) If the point $(at_1^2, 2at_1)$ is one extremity of a focal chord of the parabola $y^2 = 4ax$ then find

the co-ordinates of the other extremity and hence show that the length of the chord is $a\left(t_1 + \frac{1}{t_1}\right)^2$.

NALANDA OPEN UNIVERSITY B.Sc. Mathematics, Part-II PAPER-III (Honours)

Annual Examination, 2022

Time : 3 Hours.

Answer **Five** questions in all, selecting at least one question from each group. All questions carry equal marks. Full Marks : 80

GROUP 'A'

- 1. (a) Prove that every compact subset of *R* is closed.
 - (b) Prove that every closed subset of a compact set in *R* is compact.
- 2. (a) Prove that Int. (A) is an open set.
 - (b) Prove that a set *E* in *R* is compact if and only if *E* is closed and bounded.
- 3. (a) State and prove Bolzano Weierstrass theorem.(b) State and prove Heine-Borel theorem.

GROUP 'B'

- 4. (a) Prove that every Cauchy Sequence of real numbers is convergent.
 - (b) If (x_n) is a sequence where $x_n = (\sqrt{n+1} \sqrt{n})$ for all $n \in N$, then show that it is convergent and find its limit.
- 5. (a) Prove that every bounded monotonically increasing sequence converges to its least upper bound.
 - (b) Prove that every monotonically decreasing sequence which is bounded tends to its greatest lower bound.

6. (a) Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
.

(b) Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{(\log n)^{\log n}}$.

7. (a) Test the convergence of the series
$$\sum_{n=1}^{\infty} \left(\frac{\cos nx}{n} \right)$$
.

(b) State and prove Logarithmic ratio test.

GROUP 'C'

- 8. If W_1 , W_2 are two sub spaces of a finite dimensional vector space V over a field F then show that dim $(W_1 + W_2) = \dim W_1 + \dim W_2 \dim (W_1 \cap W_2)$.
- 9. (a) Prove that the set (1, i, 0), (2i, 1, 1), (1, 1 + i, 1 i) is a basis for $V_3(C)$.
 - (b) Define the eigen values and eigen vectors of a square matrix and compute the eigen $\begin{bmatrix} 2 & 1 & 0 \end{bmatrix}$

values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

10. Prove that $T : V_2(R) \rightarrow V_3(R)$ defined by T(a, b) = ((a + b), (a - b), b) is a linear transformation.

NALANDA OPEN UNIVERSITY B.Sc. Mathematics, Part-II PAPER–IV (Honours)

Time : 3 Hours.

Annual Examination, 2022

Answer **Five** questions in all, selecting at least one question from each group. All questions carry equal marks. Full Marks : 80

GROUP 'A'

- 1. (a) Obtain the primitive and singular solution of the equation $xp^2 2yp + 4x = 0$.
 - (b) Solve the differential equation $(8p^3 27)x = 12p^2y$ and investigate whether a singular solution exists.
- 2. (a) Solve the differential equation by the method of variation of parameters $\frac{d^2y}{dx^2} + a^2y = \operatorname{cosec} ax.$

(b) Solve :
$$\frac{d^2 y}{dx^2} + \cot x \frac{dy}{dx} + (4 \operatorname{cosec}^2 x) y = 0$$

3. (a) Solve :
$$y = (1 + p)x + ap^2$$

(b)
$$p(p + x) = y(x + y)$$
.

GROUP 'B'

- 4. (a) Prove that : $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \begin{bmatrix} \vec{p} & \vec{q} & \vec{r} \end{bmatrix} = \begin{bmatrix} \vec{a} \cdot \vec{p} & \vec{b} \cdot \vec{p} & \vec{c} \cdot \vec{p} \\ \vec{a} \cdot \vec{p} & \vec{b} \cdot \vec{p} & \vec{c} \cdot \vec{p} \\ \vec{a} \cdot \vec{q} & \vec{b} \cdot \vec{q} & \vec{c} \cdot \vec{q} \\ \vec{a} \cdot \vec{r} & \vec{b} \cdot \vec{r} & \vec{c} \cdot \vec{r} \end{bmatrix}$
 - (b) Find the volume of the parallelopiped whose edges are represented by : $\vec{i} + \vec{j} + \vec{k}, \vec{i} - \vec{j} + \vec{k}, \vec{i} + 2\vec{j} - \vec{k}.$

5. (a) Prove that
$$[\vec{a} \times \vec{b} \quad \vec{b} \times \vec{c} \quad \vec{c} \times \vec{a}] = [\vec{a} \quad \vec{b} \quad \vec{c}]^2$$
.

(b) Evaluate :
$$\frac{d^2}{dt^2} \left\{ \left(\overrightarrow{r} \times \frac{d \overrightarrow{r}}{dt} \right) \times \frac{d^2 \overrightarrow{r}}{dt^2} \right\}$$
.

- 6. (a) Find the unit normal vector to the level surface $x^2 + y z = 4$ at the point (2, 0, 0).
 - (a) If \vec{a} and \vec{b} are constant vectors and $\vec{r} = (x, y, z)$, then prove that :

$$\nabla \cdot \left\{ \stackrel{\rightarrow}{\boldsymbol{a}} \times \left(\nabla \left(\frac{1}{\stackrel{\rightarrow}{r}} \right) \right) \right\} = 0.$$

7. (a) Prove that $\nabla \cdot (\nabla \times \vec{u}) = 0$ or div. curl $\vec{u} = 0$.

(b) Prove the
$$\nabla \cdot (\vec{u} \times \vec{v}) = \vec{v} \cdot (\nabla \times \vec{u}) - \vec{u} \cdot (\nabla \times \vec{v}).$$

GROUP 'C'

8. In a simple Harmonic motion if *u*, *v*, *w* be the velocities at distances *a*, *b*, *c* respectively from a fixed point on the straight line which is not the centre of the force, then Show that the periodic time is given by the equation:

$$\frac{4\pi^2}{T}(a-b)(b-c)(c-a) = \begin{vmatrix} u^2 & v^2 & w^2 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}.$$

- 9. State and prove the necessary and sufficient condition for the principle of virtual work.
- 10. (a) What are the forces that can be neglected during forming the equation of virtual work.
 - (b) Show that the modulus of an elastic string is equal to the force which would stretch a light string to twice its natural length.

NALANDA OPEN UNIVERSITY B.Sc. Mathematics, Part-II PAPER–II (Subsidiary)

Annual Examination, 2022

Time : 3 Hours.

Answer **Eight** questions in all, selecting at least one question from each group. All questions carry equal marks. Full Marks : 80

GROUP-A

1. Find the area of the loop of the curve $x^3 + y^3 = 3axy$.

2. Show that the length of the loop of the curve $3ay^2 = x (x - a)^2$ is $\frac{4a}{\sqrt{3}}$.

- 3. Find the area of the surface of revolution formed by revolving the loop of the curve $9ay^2 = x (3a x)^2$ about the x-axis.
- 4. Find the volume of the solid generated by the revolution of the upper half of the loop of the curve $y^2 = x^2 (2 x)$.
- 5. Find the perimeter of the loop of the curve $9ay^2 = (x 2a) (x 5a)^2$.
- 6. Evaluate any *Two* of the following integrals :--

(a)
$$\int \frac{dx}{\sqrt{(x-a)(x-b)}}$$
 (b) $\int \frac{2x+3}{\sqrt{x^2+x+1}} dx$ (c) $\int \frac{x^2 dx}{(1-x^4)\sqrt{1+x^4}}$

7. Evaluate any *Two* of the following :—

(a)
$$\int_{0}^{\pi} \frac{x \, dx}{1 + \sin x}$$
 (b) $\int_{0}^{\pi} \frac{dx}{a + b \cos x}$ (c) $\int_{0}^{\pi} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x}$

8. (a) Evaluate
$$\lim_{n \to \infty} \left[\frac{n}{n^2} + \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + (n-1)^2} \right]$$

(b) Obtain a reduction formula for $\int \sin^m x \cos^n x \, dx$.

9. Solve the following differential equations :--

(a)
$$p(p + x) = y(x + y)$$
 (b) $y = x \left\{ \left(\frac{dy}{dx} \right) + \left(\frac{dy}{dx} \right)^2 \right\}$

10. Solve the following differential equations :--

(a)
$$\frac{d^2 y}{dx^2} + a^2 y = \sec ax$$
 (b) $\frac{d^2 y}{dx^2} - y = x \sin x$

GROUP 'B'

- 11. (a) Define a convex set $S \subseteq R^2$ and prove that the sphere is a convex set.
 - (b) Prove that a hyper plane is a closed set.
- 12. Find the equation of the sphere which passes through the point (α, β, γ) and the circle $x^2 + y^2 + z^2 = a^2$, z = 0.
- 13. Find the equation of the right circular cylinder which passes through the circle $x^2 + y^2 + z^2 = 9$, x y + z = 3.

GROUP 'C'

- 14. Define simple Harmonic Motion and show that how two simple Harmonic motions can be compounded in a straight line.
- 15. If forces P, Q, R act along the lines x = 0, y = 0 and $x \cos \alpha + y \sin \alpha = p$. Find the magnitude of the resultant and its line of action.
- 16. Find the equation of line of action of co-planar forces and its resultant.

NALANDA OPEN UNIVERSITY B.Sc. Mathematics, Part-III PAPER-V (Honours)

Annual Examination, 2022

Time : 3 Hours.

Full Marks : 80

Answer **Five** questions in all, selecting at least one question from each group. All questions carry equal marks.

GROUP 'A'

- 1. (a) Define a Cauchy sequence in a metric space (x, d) and prove that every convergent sequences in (x, d) is a Cauchy sequence in (x, d).
 - (b) Define the convergence of a sequence (x_n) in a metric space (x, d) and prove that limit of sequence in (x, d) if it exists is unique.
- 2. (a) State and prove Cauchy Schwartz inequality.
 - (b) State and prove Minkowsky's inequality.
- 3. Prove that (R^n, d) is complete where d on R^n is defined as $d(x, y) = \left[\sum_{i=1}^n |x_i y_i|^2\right]^{\frac{1}{2}}$.
- 4. (a) In a metric space (x, d) prove that any finite intersection of open sets in X is open.
 - (b) In a metric space (x, d) prove that the union of an arbitrary collection of open sets is open.
- 5. (a) If M and N are two subsets of a metric space (x, d) then show that $\overline{MUN} = \overline{M} \cup \overline{N}$.
 - (b) Let (x, d) be a metric space and $A \subseteq X$ then show that A is closed if and only if $A \subseteq \overline{A}$.

GROUP 'B'

- 6. Let (X, T) be a Topological space and A and B are any two subsets of X and \overline{A} denotes the closure of A then prove that :
 - (a) $\overline{\phi} = \phi$ (b) $A \subseteq \overline{A}$ (c) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$
 - (d) $\overline{A \cup B} = \overline{A} \cup \overline{B}$ (e) $(\overline{A \cap B}) \subseteq \overline{A} \cap \overline{B}$ (f) $\overline{\overline{A}} = A$
- 7. (a) Let (X, T_1) and (Y, T_2) be two Topological spaces then a mapping $f : X \to Y$ is open if and only if $f(A^\circ) \subseteq [f(A)]^\circ$ for every subset A of X.
 - (b) Let (X,T_1) and (Y, T_2) be two Topological spaces then a function $f : X \to Y$ is $T_1 \to T_2$ continuous if and only if for every subset A of X, $f(\overline{A}) \subseteq \overline{f(A)}$.

GROUP 'C'

- 8. (a) If f and g are two bounded and R-integrable functions in [a, b] then prove that fg is bounded and R-integrable in [a, b].
 - (b) If f and g are bounded and R-integrable on [a,b] then prove that f+g is also bounded and R-integrable on [a, b] and $\int_{a}^{b} {f(x) + g(x)} dx = \int_{a}^{b} {f(x)} dx + \int_{a}^{b} {g(x)} dx$.
- 9. (a) If a function f is continuous on [a, b] then prove that it is integrable on [a, b].
 - (b) Prove that every bounded monotonic function $f:[a,b] \rightarrow R$ is R-integrable on [a, b].

GROUP 'D'

10. Test the convergence of the series
$$\sum_{n=2}^{\infty} \frac{1}{n \log n (\log \log n)^{\rho}}$$

- 11. (a) Prove that the series $\sum \left(\frac{\cos n\theta}{n^2}\right)$ is convergent for all real values of θ .
 - (b) Find the radius of convergence of the series $\sum \frac{n^n x^n}{n}$.

NALANDA OPEN UNIVERSITY B.Sc. Mathematics, Part-III PAPER-VI (Honours)

Annual Examination, 2022

Time : 3 Hours.

Full Marks : 80

Answer **Five** questions in all, selecting at least one question from each group. All questions carry equal marks.

GROUP 'A'

- 1. (a) Prove that the order of every element of a finite group is a divisor of the order of the group.
 - (b) State and prove Lagrange's Theorem.
- 2. (a) Prove that every group is isomorphic to a group of one-one onto functions.
 - (b) Sate and prove Caley's Theorem.
- 3. (a) Prove that the order of an element a of a group G is equal to the order of f(a).
 - (b) Prove that if a group G has four elements then it must be abelian, group.

GROUP 'B'

- 4. (a) If f is a homomorphism of a group G into a group G'. Then prove that the Kernel K of G is a normal subgroup of G.
 - (b) Define a normal subgroup of a group G. Show that every subgroup of an abelian group is normal.
- 5. (a) If $f(x) = x^4 + x^3 3x^2 x + 2$ and $g(x) = x^4 + x^3 x^2 + x 2$. Then find the g.c.d. of f(x) and g(x) as polynomials over Q.
 - (b) If R is a commutative ring with unity element then show that R is a field if and only if it has non-trivial ideals.

GROUP 'C'

- 6. (a) Show that the set of all real numbers in [0, 1] is not denumerable.
 - (b) State and prove Schroder-Bernstein Theorem.
- 7. (a) If A_i is countably infinite set then prove that $\bigcup_{i=1}^{\infty} A_i$ is countably infinite set.
 - (b) Prove that $N \times N$ is countable.
- 8. (a) Prove that $2^{No} = c$.
 - (b) State and prove Zorn's Lemma.

GROUP 'D'

- 9. (a) Prove that the function $u = x^3 3xy^2 + 3x^2 3y^2 + 1$. satisfies laplacis equation.
 - (b) If f(z) = u + iv is analytic function and $u v = e^{x}(\cos y \sin y)$ find f(z) in terms of z.

10. (a) Find the radius of convergence of the series $\frac{z}{2} + \frac{1.3}{2.5}z^2 + \frac{1.3.5}{2.5.8}z^3 + \dots \infty$.

- (b) Find the domain of the convergence of the series $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!} \left(\frac{1-z}{z}\right)^n.$
- 11. State and prove Cauchy integral formula.

NALANDA OPEN UNIVERSITY B.Sc. Mathematics, Part-III PAPER-VII (Honours)

Annual Examination, 2022

Time : 3 Hours.

Full Marks : 80

Answer **Five** questions in all, selecting at least one question from each group. All questions carry equal marks.

GROUP 'A'

- 1. (a) Prove that a sphere is a convex set.
 - (b) Prove that the set of all feasible solutions of a linear programming problem constitutes a convex set.
- 2. Solve the L.P.P. problem by simplex method.

Maximize $z = 4x_1 + 10x_2$. Subject to the conditions.

 $2x_1 + x_2 \le 50$ $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ $x_1, x_2 \ge 0.$

3. Maximize z = 3x + 5y + 4z. Subject to the conditions.

$$2x + 3y \le 8$$

 $2y + 5z \le 10$
 $3x + 2y + 4z \le 15$
 $x, y, z \ge 0.$

GROUP 'B'

4. (a) Solve
$$\frac{dx}{x^2 - yz} = \frac{dy}{y^2 - zx} = \frac{dz}{z^2 - xy}$$
.

(b) Solve $(2xz - yz)dx + (2yz - zx)dy - (x^2 - xy + z^2)dz = 0$.

5. (a) Solve
$$\frac{dx}{dt} + 4x + 3y = t^2$$
 and $\frac{dy}{dt} + 2x + 5y = e^{2t}$

- (b) Solve $t \frac{dx}{dt} + y = 0$ and $t \frac{dy}{dt} + x = 0$.
- 6. (a) Solve $r t \cos^2 x + p \tan x = 0$ by Monge's method.
 - (b) Solve $r = a^{3}t$ by Monge's method.
- 7. (a) Solve $(p^2 + q^2)y = qz$ by Charpits method.
 - (b) Solve pxy + pq + qy yz = 0 by Charpit's methods.
- 8. (a) Solve $(y^2 + z^2 x^2)p 2xyq + 2zx = 0$.
 - (b) Solve $(x + y) (p + q)^2 + (x y) (p q)^2 = 1$

GROUP 'C'

- 9. (a) Find the attraction of a circular disc at an external point at height h.
 - (b) Find the potential of a circular disc at a point distant h on the axis from the centre.
- 10. Find the centre of pressure of a vertical circle of radius 'a' wholly immersed in a homogeneous liquid with its centre at a depth h below the free surface.

NALANDA OPEN UNIVERSITY B.Sc. Mathematics, Part-III PAPER-VIII (Honours)

Annual Examination, 2022

Time : 3 Hours.

Full Marks : 80

Answer any Five Questions. All questions carry equal marks. General Calculator is Allowed.

- 1. (a) Prove that : $\bigcup_{1} x + \bigcup_{2} x^{2} + \bigcup_{3} x^{3} + \dots = \frac{x}{1-x} \bigcup_{1} + \frac{x^{2}}{(1-x)^{2}} \Delta \bigcup_{1} + \frac{x^{3}}{(1-x)^{3}} \Delta^{2} \bigcup_{1} + \dots$ Show that if *n* is a positive integer then : $(x \Delta)^n \bigcup_x = (x + n - 1)^{(n)} \Delta^n \bigcup_x$. (b) (a) Show that if Δ operates on *n*, then : 2. $\Delta \binom{n}{x+1} = \binom{n}{x}$ and hence deduce that $\sum_{n=1}^{N} \binom{n}{x} = \binom{N+1}{x+1} - \binom{1}{x+1}$. (b) Prove that : $\bigcup_{x} - \bigcup_{x+1} + \bigcup_{x+2} - \bigcup_{x+3} + \dots = \frac{1}{2} \bigcup_{x-\frac{1}{2}} -\frac{1}{2} \Delta^{2} \bigcup_{x-\frac{3}{2}} + \frac{1.3}{2!8^{2}} \Delta^{4} \sum_{x-\frac{5}{2}} + \dots = \frac{1}{2} \sum_{x-\frac{1}{2}} -\frac{1}{2} \Delta^{2} \bigcup_{x-\frac{3}{2}} + \frac{1.3}{2!8^{2}} \Delta^{4} \sum_{x-\frac{5}{2}} + \dots = \frac{1}{2} \sum_{x-\frac{1}{2}} -\frac{1}{2} \Delta^{2} \bigcup_{x-\frac{3}{2}} + \frac{1.3}{2!8^{2}} \Delta^{4} \sum_{x-\frac{5}{2}} + \dots = \frac{1}{2} \sum_{x-\frac{1}{2}} -\frac{1}{2} \Delta^{2} \bigcup_{x-\frac{3}{2}} + \frac{1.3}{2!8^{2}} \Delta^{4} \sum_{x-\frac{5}{2}} + \dots = \frac{1}{2} \sum_{x-\frac{1}{2}} -\frac{1}{2} \Delta^{2} \bigcup_{x-\frac{3}{2}} + \frac{1.3}{2!8^{2}} \Delta^{4} \sum_{x-\frac{5}{2}} + \dots = \frac{1}{2} \sum_{x-\frac{1}{2}} -\frac{1}{2} \sum_{x-\frac{1}{2}} + \frac{1}{2!8^{2}} \sum_{x-\frac{5}{2}} + \frac{1}{2!8^{$ 3. (a) If f(x) and g(x) are any functions of x then prove that : (i) $\Delta [f(x) g(x)] = f(x) \Delta g(x) + \Delta g(x+1)f(x) = f(x+1) \Delta g(x) + g(x) \Delta f(x)$ (ii) $\Delta\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x)g(x+1)}$. (b) Express the following functions and their differences in the factorial notation. (i) $y = x^4 - 12x^3 + 42x^2 - 30x + 9$. (ii) $y = 2x^3 - 3x^2 + 3x - 10$ (a) Estimate the missing figure in the following table : 4. x : 1 2 3 4 5 f(x): 2 5 7 X 32 (b) Find the sixth term of the series : 8 + 12 + 19 + 29 + 42 + (a) Prove that : $\frac{\Delta^n O^m}{\lfloor \underline{n} \rfloor} = \frac{n \Delta^n O^{m-1}}{\lfloor \underline{n} \rfloor} + \frac{\Delta^{n-1} O^{m-1}}{\lfloor \underline{n} - 1}.$ 5. (b) Prove that : $\Delta^n O^{n+1} = \frac{n(n+1)}{2} \Delta^n O^n$. 6. Find the maximum and minimum values of the function tabulated below. x : 02 3 4 5 1 $f(x): 0 \ 0.25 \ 0 \ 2.25 \ 16.00 \ 56.25$ 7. (a) What is the form of the function of the following table. x : 0 1 45 f(x): 8 11 68 123(b) Find the polynomial of the lowest degree which assumes the values 3, 12, 15, -21. When x has the values 3, 2, 1, -1 respectively. 8. Solve the equation $2 + \log_{10}^{x} = 2e^{-x}$ by the method of iteration. If f(20) = 14, f(24) = 32, f(28) = 35, f(32) = 40. Then by Gauss's forward formula show 9. that $f(25) = 33 \cdot 49$. 10. (a) Evaluate $\int_{1+x^2}^{\infty} \frac{1}{1+x^2} dx$ using Simpson's $\frac{1}{3}$ rd rule.
 - (b) Find the solution of the difference equation $u_{x+4} 7u_{x+1} + 12u_x = \cos x$.