NALANDA OPEN UNIVERSITY Intermediate of Science (I.Sc.), Part-I Mathematics, Paper-I Annual Examination, 2023

Tin	ne: 3.0) Hrs.	Full Marks: 80	
		Answer any <i>Five</i> Questions. Question No.1 is compulsory. All questions carry equal marks.		
1.	Sele marl (a)	t the correct answer from the following questions. Each part of the quest, (A \cap B) \cap B is \cdot	estions carries one	
	()	(i) A (ii) B (iii) $A \cap B$ (iv)	None of these	
	(b)	If a set A has n elements then the number of elements in the power set P	P (A) is :	
		(i) $2n$ (ii) 2^n (iii) n^2 (iv) None of	these	
	(c)	Which one is correct, $1 + w + w^2$ is equal to	NI	
	(d)	(1) -1 (11) 1 (11) 0 (1V) If ${}^{15n}_{a} + {}^{15n}_{a} = 11.5$ then ${}^{8}C$ is equal to :	None of these	
	(u)	(i) 20 (ii) 65 (iii) 56 (iv)	None of these	
	(م)	$(1) 50 \qquad (11) 05 \qquad (11) 50 \qquad (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) $	None of these	
	(0)	(i) 3 (ii) 2 (iii) 0 (iv)	None of these	
	(f)	The value of $C_0 + C_2 + C_4 + C_6 + \dots$ in $(1+x)^n$ is :		
		(i) 2^n (ii) 2^{n-1} (iii) $2n-1$ (iv)	None of these	
	(g)	$\tan^{-1}x + \cot^{-1}x$ is equal to :		
		(i) $\frac{\pi}{2}$ (ii) π (iii) $\frac{\pi}{2}$ (iv)	None of these	
	(h)	\log_4^{32} is equal to :		
		(i) 5 (ii) $\frac{2}{5}$ (iii) $\frac{5}{2}$ (iv)	None of these	
	(i)	If $\sin\theta = \frac{\sqrt{3}}{2}$, then θ is equal to :		
		(i) $\frac{\pi}{6}$ (ii) $\frac{\pi}{3}$ (iii) $\frac{\pi}{2}$ (iv)	None of these	
	(j)	If $A + B + C = \pi$, then $\cos A + \cos B + \cos C$ is equal to :		
		(i) $\sin A \cdot \sin B \cdot \sin C$ (ii) $\cos A \cdot \cos B \cdot \cos C$	c .	
		(iii) $\sin A + \sin B + \sin C$ (iv) $1 + 4\sin \frac{\pi}{2} \sin \frac{\pi}{2} \cdot \sin \frac{\pi}{2}$	$n\frac{c}{2}$	
	(k)	If the equations $x^2 + px + q = 0$ and $x^2 + qx + p = 0$ have a common regulat to :	root then p+q+1 is	
		(i) 0 (ii) 1 (iii) 2 (iv)	None of these	
	(I)	If $a \neq b \neq c \neq 0$ such that :		
		$\begin{bmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \end{bmatrix} = 0$, then $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ is equal to :		
		1 1 $1+c$		
		(i) 1 (ii) -1 (iii) 0 (iv)	None of these	
	(m)	For all values of q the locus of the point of intersection of the lines $x \in [0, 1]$	$\cos\theta + y\sin\theta = a$ and	
		$x \sin \theta - y \cos \theta = 0$ is: (i) a airela (ii) an allinga (iii) a hyperbola (iv)	a parahala	
		(i) a circle (ii) an empse (iii) a hyperbola (iv)	a parabola	
	(n)	The triangle formed by the lines $x + y - 4 = 0$, $3x + y = 4$, $x + 3y = 4$ is	:	
		(i) Isosceles (ii) Equilateral (iii) Right-angled (iv)	None of these	
	(0)	I he eccentricity of the parabola $x^2 - 4x - 4y + 4 = 0$ is : (i) $e = 0$ (ii) $e = 1$ (iii) $e - 4$ (iv)	None of these	
	(g)	If $y - x - 2 = 0$ touches the parabola $y^2 = 8x$ then its point of contact is :		
	(1)	(i) $(2 \ 4)$ (ii) $(1 \ 2)$ (iii) $(2 \ 3)$ (iv)	None of these	
		$(-, (-, \cdot), (-, \cdot), (-, -), $		

- 2. Find the sum to n terms of the series : $1 \cdot 2 \cdot 5 + 2 \cdot 3 \cdot 6 + 3 \cdot 4 \cdot 7 + \dots$ to n terms.
- 3. How many terms are identical in the progressions 2, 5, 8, 11179 and 3, 5, 7,101. ? Identify them.

4. For all real values of x, show that
$$\left(\frac{x^2 + 34x - 71}{x^2 + 2x - 7}\right)$$
 never lies between 5 and 9.

5. Prove that
$${}^{n}C_{0}{}^{n}C_{r} + {}^{n}C_{1}{}^{n}C_{r+1} + \dots + {}^{n}C_{n-1}{}^{n}C_{n} = \frac{2n}{(n-r)(n+r)}$$

6. Prove that
$$\Delta = \begin{vmatrix} b^2 + c^2 & ab & ac \\ ab & c^2 + a^2 & bc \\ ac & bc & a^2 + b^2 \end{vmatrix} = 4a^2b^2c^2.$$

7. In a \triangle ABC prove that $a^2 \cos (B - C) + b^2 \cos (C - A) + c^2 \cos (A - B) = 3abc$.

- 8. Find the value of n so that $\left(\frac{a^{n+1}+b^{n+1}}{a^n+b^n}\right)$ is the geometric mean between a and b.
- 9. How many even numbers of four digits can be made with the digits 0, 3, 4,5, 9.
- 10. A straight line touches the circle $x^2 + y^2 = 2a^2$ and the parabola $y^2 = 8ax$. Show that its equation is $y = \pm (x + 2a)$.

9 9 9

NALANDA OPEN UNIVERSITY Intermediate of Science (I.Sc.), Part-I Chemistry, Paper-I Annual Examination, 2023

Time: 3.00 Hrs. Full Marks: 5								Full Marks: 80			
	Answer <i>Five</i> Questions in all, selecting atleast Two Questions from each Group. Question No.1 is compulsory. All questions carry equal marks.										
1.	Choc (i)	ose the The (a)	correct a electronic [Ar] 3d ⁹	nswer in t configur 4s ² (b)	he follo ation of) [Ar]	wing :- [•] Cu is : 3d ¹⁰ 4s ¹	^L (c)	[Ar] 4d ⁸	4s² 4p ¹	(d)[Ar] 3d ⁷ 4s ² 4p ²
	(ii)	Which (a) (c)	n of the fo Oxygen Nitrogen	llowing is	mono a	atomic g	as :— (b) (d)	Helium Chlorine			
	(iii)	Oxida (a)	tion numt 2	er of Cr i (b)	n K ₂ Cr ₂ (4	O₃ is:—	(c)	3		(d)	6
	(iv)	Valen (a)	cy of Ar is 0	:— (b)	1		(c)	2		(d)	3
	(v)	Which (a)	n is of 3d I V	olock elen (b)	nents : K		(c)	Br		(d)	Ag
	(vi)	Most (a)	electropos K	itive elem (b)	nent is : Na		(c)	Li		(d)	Cs
	(vii)	Which (a) (c)	n of the fo He Ar	llowing is	not the	e noble g	gas : (b) (d)	Ne Fe			
	(viii)	Which (a)	n is not tra Ti	nsition el (b)	ement o V	of follow	ving: (c)	Cr		(d)	Ве
						GROUF	- 'A'				
2.	Write (a)	e the h CH₄	ybridisatic (b) NH3	on, structu (c)	ıre and Pcl₅	shape c (d)	of the fo Bcl ₃	bllowing :—			
3.	Write (a)	e the e Cacl ₂	lectronic ((b) Na ₂ (lot formul) (c)	la of the HCHO	e followi (d)	ng :— HClO				
4.	Expla (a)	ain the Electr	following onegativit	terms :— y (b)	рН	(c)	Ionisat	tion Potenet	ial		
5.	Dete comp	rmine	the oxida	ition num	ber of	the ce	ntral at	com and ec	quivalen	it we	ight of the given
	(a)	$K_2Cr_2($	J ₇ (b)	Km _n O ₄	(C)	H_2SO_4	(d)	HNO ₂			
6.	Fill in the Blanks :— (a) Hybridisation of Carbon in C_2H_2 is (b) Mercury is in state at room temperature. (c) Glycol is alcohol. (d) Water is solvent. (e) Water is more than alcohol. (f) No. of π bonds in Acetylene is (g) No. of core electrons in Mg is (b) Maximum no. of electrons in any shell is										

GROUP - 'B'

7.	Writ	e short notes on the	follov	ving:			
	(a)	Fe SO ₄ . $7H_2O$	(b)	Ores and Minerals		(c)	Paramagnetism and Diamagnetism
8.	Expl	ain the following :—					
	(a)	Morality		(b))	Mole	fraction
	(c)	d-block elements		(0	1)	Inne	r transition element
9.	Expl	ain the characteristic	s of d	-block elements on	the	e follo	wing basis :
	(a)	Colour	(b)	Magnetic propertie	es		(c) Complex formation
10.	Writ	e the IUPAC name of	follo	wing compounds :			

Write the IUPAC name of following compounds : (a) $[Ptcl4]^{-2}$ (b) $[FeF6]^{-3}$ (c) $[Cr(H_2O)6]^{+2}$ (d) $[Co(NH_3)_4Cl_2]^{+2}$

Programme of I.Sc. Part-I Counselling and Practical Exam' 2023

Venue : For Botany - 1st Floor, Bio Lab, Biscomaun Tower, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, Biscomaun Tower, Patna

Practical Counselling

Data	Tim		
Date	09.00 AM to 11.00 AM	11.00 AM to 02.00 PM	02.30 PM to 05.30 PM
28.03.2023	Botany [All Students] [Biology, Paper-I]	Chemistry [All Students]	Physics [All Students]

	Data	Time						
	Date	10.00 AM to 01.00 PM	02.00 PM to 05.00 PM					
	31.03.2023	Botany [All Students] [Biology, Paper-I]	Chemistry [All Students]					
01.04.2023		Physics [All Students]						

NALANDA OPEN UNIVERSITY Intermediate of Science (I.Sc.), Part-I Physics, Paper-I

Annual Examination, 2023

Time : 3.00 Hrs.

Full Marks : 80

Answer any *Five* Questions. Question No.1 is compulsory. All questions carry equal marks.

- 1. Select the correct option in each of the following. Each part of the questions carries 1 mark.
 - If xy is a torque and y is the distance of the particle from the axis of rotation, then x is :---(a)
 - (i) Mass (ii) Velocity (iii) Force
 - (iv) Displacement
 - (b) If x is error in the determination of a physical quantity X, then percentage error is :--
 - $\frac{X}{X} \times 100\%$ (ii) $\frac{X}{X} \times 100$ (iii) $\frac{X}{x} \times 10\%$ (iv) $\frac{X}{x} \times 10\%$ (i)
 - The numerical value of Newton into dyne is :--(c)
 - 10¹⁰ dvne (ii) 10^5 dvne (iii) 10^{15} dvne (iv) None of these (i)

(d) If $\vec{P} + \vec{Q} = \vec{R}$ and |P| + |Q| = |R|, then the angle between P and Q is :—

120° (ii) 90° (iii) 0° (i) (iv) 30°

If displace $Y \propto t^2$ where t^2 is time, then the velocity is :— (e)

- Constant Variable (i) (ii)
- (iii) Zero (iv) None of these
- A spring blame is kept horizontally, its two ends are pulled by a force of 5 kg, then its reading (f) will be :--
 - (i) 5 kg. wt. (ii) 5 Newton
 - (iii) 9.8 kg. wt. (iv) None of these
- (q) A wheel of radius 2 meter is making 60 resolution per second, then linear velocity of a pt. on rim will be :--
 - $\pi/3$ (i) 2π (ii)
 - (iv) None of these (iii) π
- (h) 64 rain drops combine to form a single drop. The ratio of the total surface energy of all the drops to that of the single drop is :--
 - (i) 4:1 (ii) 64:1
- (iii) 1:4 (iv) 8:1 A barometer reads 72 cm of mercury, then what will be the pressure in bars (i)
- 13.6 bars 0.959616 (ii) (i)
 - (iii) 9.8 bars (iv) 1 bar
- 273°a is equal to (j) (ii) -260°c (iii) -273°c 0°c (iv) None of these (i)
- For a gram molecule of a gas, the quantity pV/T is called :--(k)
 - (i) a constant (ii) mass (iii) number of moles of the gas
 - (iv) universal gas constant
- 2 gm mole of a gas is heated thorugh 30°c at constant pressure. The work done is nearly equal (I)to :--
 - 480 joule 490 joule (iii) 500 joule (iv) None of these (i) (ii)
- (m) The maximum wavelength of a transverse wave set up in a string of length L, is :--

L (i) L (ii) (iii) 2L (iv) 4L 2

(n) The interval between two nodes of frequencies 256 c/s & 512 c/s is :--

(i) 2 (ii) 786 (iv) 256

- The propagation of wave inside an open orfan pipe takes place due to :--(0)
 - rarefaction at the end of the mouth (ii) rarefaction just outside the mouth (i)
 - (iii) comprenin just outside the mouth
- (iv) None of these

Zero

- The numerical sum of velocity and acceleration in a S.H.M. is always :-(p)
 - Constant (i)
 - (ii) (iii) Either constant of zero (iv) None of these

(iii) ¹/₂

- Derive the formula for 'The maximum height attained' and 'time of flight' of a projectile projected 2. with velocity ν at an angle θ with the horizontal.
- 3. Explain centripetal and centrifugal forces. Deduce expression for centripetal force acting on particle moving uniformly along a circle.
- 4. What is Hooke's Law ? Define the various elastic constants. Find the energy stored in a stretched wire.
- Define Surface Tension. Obtain expression for rise of water in a narrow capillary tube glass kept 5. vertically and partially dipped in water.
- 6. Discuss the composition of two mutually perpendicular S.H.Ms about the same central point.
- 7. State the postulates of kinetic theory of gases. On its basis deduce expression for the pressure of an ideal gas.
- 8. State and explain the 1st law of thermodynamics.
- 9. Discuss Laplace's correction in the expression for velocity of sound in air. What is the effect of temperature on the velocity of sound.
- Describe the construction and working of a constant volume standard hydrogen thermometer. 10. Mention its merits.

Ø Ø

Programme of I.Sc. Part-I Counselling and Practical Exam' 2023

Venue For Botany - 1st Floor, Bio Lab, Biscomaun Tower, Patna : For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, Biscomaun Tower, Patna

Practical Counselling							
Data	Tin						
Date	09.00 AM to 11.00 AM	11.00 AM to 02.00 PM	02.30 PM to 05.30 PM				
28.03.2023	Botany [All Students] [Biology, Paper-I]	Chemistry [All Students]	Physics [All Students]				

Data	Time						
Dale	10.00 AM to 01.00 PM	02.00 PM to 05.00 PM					
31.03.2023	Botany [All Students] [Biology, Paper-I]	Chemistry [All Students]					
01.04.2023	Physics [All Students]						

Nalanda Open University Annual Exam-2022

Intermediate of Science (I.Sc.), Part-I Botany, Paper-I

Time: 3.00 Hrs. Full Marks: 80 Answer any Five Questions. Question No.1 is compulsory. All questions carry equal marks. Select the correct answer in the following statements. 1. (i) Which one of the following helps in Nitrogen fixation: (b) Nostoc (c) Penicillium Puccinia (a) Albugo (d) (ii) Which of the following lack Chlorophyll: Pteridophyta (a) Fungi (b) Algae Bryophyta (d) (c) Fluid Mosaic model of Plasma membrane was given by: (iii) (b) Daniel (a) Du Praun (c) Robertson (d) Singer and Nicholson (iv) True nucleus is absent in: (a) Bacteria Green Algae Lichen (b) (c) Fungi (d) Energy currency of cell is: (v) (a) AMP (b) ATP ADP (d) GTP (c) Proteins are synthesized by: (vi) (a) Ribosomes (b) Mitochondria (c) Golgi body Centrosome (d) (vii) Who is associated with Green Revolution in India: (a) EJ Butler BP Pal (b) M S Swaminathan (c) R S Prasad (d) Verticillaster inflorescence is found in : (viii) (a) Leguminosae (b) Cruciferae Labiatae Compositae (c) (d) (ix) Ozone hole accelerated due to release of : (b) CFC (a) CO2 Petroleum SO₂ (c) (d)The phenotypic ratio of a Dihybrid back croos is: (x) (a) 1:1 (b) 1:1:1:1 1:2:1 3:1 (c) (d) Phellogen is : (xi) (a) Apical meristem (b) Intercalary meristem(c) Lateral meristem None of these (d) (xii) Light reaction occurs in : (b) (a) Grana Stroma Both (a) and (b) (d) None of these (c) Which plant hormone induces cell division: (xiii) (a) Cytokinin (b) GA (c) Ethylene (d) Auxin A Phyllode is a: (xiv) Modified stem (b) Modified root (c) Modified Flower (d) Modified (a) leaf

- (xv) Which of the fallowing gases contributes to global warming:
 - (a) Nitrogen dioxide
- (b) Carbon dioxide

(c) Sulphur Dioxide

- (d) Carbon monoxide
- (xvi) Pyramids of Biomass in an ecosystem is:
 - (a) Always upbright
 - (b) Inverted
 - (c) Upright or inverted
 - (d) None of above
- 2. Write briefly:
 - (a) Two medicinal plants. (Economic importance, Botanical name and family)
 - (b) Two timber yielding plants. (Economic importance, Botanical name and Family)
- 3. Describe ultra-structure of TMV.
- 4. Describe Prophase I of Meiosis with suitable diagram.
- 5. Describe the structure and function of Chloroplast.
- 6. Describe different laws of inheritance as proposed by Mendel.
- 7. What is Mutation? Describe briefly.
- 8. What is succession? Describe succession in a pond.
- 9. What do you understand by the term pollution? Describe briefly causes of air pollution and its remedy.
- 10. Describe modification of stem with suitable diagram.

•••

Programme of I.Sc. Part-I Counselling and Practical Exam' 2022

Venue : For Botany - 1st Floor, Bio Lab, Biscomaun Tower, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, Biscomaun Tower, Patna

Practical Counselling							
Data	Time						
Date	09.00 AM to 12.00 Noon	12.30 PM to 3.30 PM					
21.08.2022	Botany [Biology, Paper-I] [All Students]	—					
25.08.2022	—	Chemistry [All Students]					
01.09.2022	Physics [All Students]	—					

Data	Time						
Dale	09.00 AM to 12.00 Noon	12.30 PM to 3.30 PM					
25.08.2022	Botany [Biology, Paper-I] [All Students]	—					
26.08.2022	—	Chemistry [All Students]					
02.09.2022	Physics [All Students]	—					

NALANDA OPEN UNIVERSITY Intermediate of Science (I.Sc.), Part-I Chemistry, Paper-I Annual Examination, 2022

Tim	ne: 3.00) Hrs.		ammation,	2022		Full Marks: 80	ļ
		Answer <i>Fiv</i>	e Questions in all, selecti Question No.1 is comp	ing atleast Tw ulsory. All qu	o Questions from estions carry equa	each Grou I marks.	р.	
1.	Choo (i)	ose the correct an The electronic c	nswer in the followin configuration of Cr is	g :- :—				
		(a) $(Ar)3d^44$	S ²	(b)	$(Ar)3d^{5}4S^{1}$			
		(c) $(Kr)3d^545$	5^1	(d)	$(Kr)3d^{4}4S^{2}$			
	(ii)	Which of the fo	llowing is mono aton	nic gas :—	0			
		(a) Hellum (c) Nitrogen		(b) (d)	Oxygen Chlorine			
	(iii)	Oxidation numb	er of Cr in $K_2 Cr_2 O_7$	is:—				
		(a) 6	(b) 5	(c)	7	(d)	4	
	(iv)	Valency of Mag	nesium is :—					
		(a) 3	(b) 1	(c)	2	(d)	4	
	(v)	Select which ele	ement is known as al	kali metal	-			
		(a) Mg	(b) Al	(c)	Na	(d)	Fe	
	(vi)	Most electropos	itive element is :-			(-I)	6-	
	(···)	(a) K	(D) Na	(C)	LI	(a)	Cs	
	(11)	Which of the fol	llowing is noble gas (element :— (b)				
		(c) Chlorine		(d)	Nitrogen			
	(viii)	Which is transit	ion element :—		-			
		(a) Na	(b) Mg	(c)	Mn	(d)	Al	
			GR	OUP - A				
2.	Fill in (a) (b) (c) (d) (e) (f) (g) (h)	h the Blanks :— Hybridisation of Mercury is in Organic compou Glycol is Water is No. of π -bonds No. of core elec Maximum no. of	Carbon is C ₂ H ₄ is state at unds are generally so alcohol. solvent. in Acetylene is trons in Sodium is f electrons in any sho	: room tem bluble in bluble in	perature. solv	ents.		
3.	Write (a)	e the hybridisatio CH₄	n, structure and sha (b) NH ₃	pe of the fo (c)	ollowing :— H ₂ O	(d) B	F ₃	
4.	Writ (a)	e the electronic d CaO	lot formula of the fol (b) H ₂ SO ₄	lowing :— (c)	HNO ₃	(d) H	СНО	
5.	Expl (a)	ain the following Electronegativit	terms :— y (b) Normality	(c)	рН	(d) Io	onisation Potenetial	
6.	Dete com	ermine the oxida pounds :—	tion number of the	e central a	tom and equiv	valent w	eight of the giver	1
	(a)	$K_2Cr_2O_7$	(b) KMNO ₄	(c)	H_2SO_4	(d) H	NO ₃	

- 7. Write short notes on the following :—
 - (a) $FeSO_4 7H_2O$ (b) $(CaSo_4)_2 H_2O$ (c) Ores and Minerals(d) $NaHCO_3$
- 8. Write the IUPAC name of the following complex compounds :--
 - (a) $K_4[Fe(CN)_6]$ (b) $[Co(NH_2)_6]^{3+}$
 - (c) $(NiCl_4)^{2-}$ (d) $(Cr(NH_2)_4 Cl_2)$
- 9. Explain the following :—
 - (a) Inner transition elements
 - (c) d-block elements (d) Mole fraction
- 10. Why d-block elements are called transition elements ? Explain the characteristics of 3d-block elements on the following basis :—
 - (a) Colour

(b) Magnetic Properties

(b) Molarity

(c) Complex Compounds formation.

			NA	LAN	IDA OPI	EN U	NIVE	RSITY		
			Intern	nedi	ate of Sc Physics	ience Pape	e (I.Sc er-I	.), Part-I		
Time	. · 7 0	0 Hrs			Annual Exan	nination	, 2022			Full Marks · 80
THIE		0 111 5.	Answer	any F	<i>ive</i> Questions.	Question	n No.1 is I marks	compulsory.		
				,		ir y cquu	in marks.			
1.	Selec	t the c	correct option in e	each c	of the followi	ng. Eac	h part c	of the questions	carrie	s 1 mark.
	(a)	(i)	never has a unit	ty :—	-		(ii)	always has a u	ınit	
		(iii)	may have a unit				(iv)	None of these		
	(b)	The n	nagnitude of the	vecto	r product of	two veo	tors is a	a :—		
		(I) (iii)	Scalar either Scalar or V	/ector			(II) (iv)	Vector None of these		
	(c)	Let th	e angle between	Two	non zero vec	tors A	& B is 1	20° and its resu	ltant (C, then :—
	(-)	(i)	C must be equal	to A	- <i>B</i>		(ii)	C must be less	than	A - B
		(iii)	C must be greate	er tha	n <i>A – B</i>		(iv)	C may be equa	al to	A - B
	(d)	A sto	ne is released fro	om ar	n elevator go	oing up	with a	n acceleration '	a'. Th	e acceleration of
		the st	one after the rele	ease i	s :—		(;;)	(a a) downw	ard	
		(1) (iii)	a upwaru (a – a) upward				(ii) (iv)	(g – a) downw a downward	aru	
	(e)	Which	n one set can ente	er into	o the list of f	undame	ental qu	antities in any s	system	n of units :—
	()	(i)	length, mass and	l velo	city		(ii)	length, time ar	, nd velo	ocity
		(iii)	mass, time and v	elocit	Ŋ		(iv)	length, time a	nd ma	SS
	(f)	An ob	ject may have :-	- 1		-i.	(::)		-:	
		(1) (iii)	non zero accelera	thout ation	without varv	ina velo	(II) citv (iv	Varying veio None zero a	city wi	ation without
	(q)	Consi	der the motion of	the t	; ip of the mir	nute hai	nd of a	, clock. In one ho	our :—	
	(0)	(i)	the displacement	is ze	ro		(ii)	the distance co	overed	l is zero
	(1-)	(111)	the average spee	ed is z	ero		(IV)	the average ve	elocity	IS ZERO
	(n)	the sp	tor car is going di beed. The change	ue no : in th	rtn at a spee e velocity of	the car) km/n. [.] is abol	It makes a 90° It :—	iert ti	irn without changing
		(i)	50 km/h towards	west			(ii)	70 km/h towar	ds so	uth-west
		(iii)	70 km/h towards	nort	n-west		(iv)	Zero		
	(i)	A bod pulls	ly of wt. W_1 is su the chain by a for	spenc rce :	led from the -	ceiling	of a roo	om through a cl	nain o	f wt. W_2 . The ceiling
		(i)	W_1	(ii)	W ₂	(iii)	$W_1 + V_1$	N ₂	(iv)	$\frac{W_1 + W_2}{2}$
	(j)	The t (i)	hermal conductivi length	ty of (ii)	a nod depen mass	ds on (iii)	area of	f cross section	(iv)	material of the rod
	(k)	If hea (i)	t is expressed in 1	Jule, (ii)	the mechani 4.2	cal equ (iii)	ivalent o 4.2 Jou	of heat is :— Jle	(iv)	1 Joule
	(I)	Newto	on's law of cooling	g is a	special case	of :—	.			
		(I) (iii)	Kirchhoff's law Stenfen's law			(II) (iv)	Plande Wein's	is law displacement la	w	
	(m)	The a	mplitude of a sin	wave	att=0is:	_	_	•		

(iii) $\frac{1}{2}$ (iv) $\frac{1}{V_2}$ (i) Zero (ii) '1'

- (n) A sin wave is travelling in a medium. The minimum distance between the two particles having some speed is :—
 - (i) $\frac{\lambda}{4}$ (ii) $\frac{\lambda}{2}$ (iii) $\frac{\lambda}{3}$ (iv) λ
- (o) A mechanical wave propagates in a medium along the x-axis. The particle of the medium :--
 - (i) must move on the x-axis (ii) must move on the y-axis
 - (iii) may move along x-axis
- (iv) may move on y-axis
- (p) When you speak to your friend, which of the following parameters have a unique value in the sound produced :—
 - (i) Frequently (ii) Wavelength (iii) Amplitude (iv) Wave Velocity
- 2. Discuss the perfectly elastic collision of two bodies moving along the x-axis.
- 3. Derive the expression for the force on a particle moving along a circle. Explain the direction of the force.
- 4. A projectile is projected with velocity v at an angle θ with the horizontal. Derive the formula for the 'maximum height; and the time of flight.
- 5. Define coefficient of viscosity. Derive Poiseullie's equation. How is the Viscocity of water determined on its basis ?
- 6. Describe the construction and theory of a constant volume hydrogen gas the thermometer.
- 7. Derive an expression for the pressure of gas on the basis of the assumptions of K.T.G.
- 8. Write the differential equation of motion of S.H.M. and solve the equation to find the velocity and the displacement.
- 9. Write Newton's formula for the speed of sound and then use Laplace's correction for the final formula.
- 10. Derive the expression for the excess pressure inside (a) a liquid drop, (b) a soap bubble.

000

Programme of I.Sc. Part-I Counselling and Practical Exam' 2022

Venue : For Botany - 1st Floor, Bio Lab, Biscomaun Tower, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, Biscomaun Tower, Patna

Practical Counselling							
Data	Time						
Date	09.00 AM to 12.00 Noon	12.30 PM to 3.30 PM					
21.08.2022	Botany [Biology, Paper-I] [All Students]	_					
25.08.2022	_	Chemistry [All Students]					
01.09.2022	Physics [All Students]	—					

Data	Time			
Date	09.00 AM to 12.00 Noon	12.30 PM to 3.30 PM		
25.08.2022	Botany [Biology, Paper-I] [All Students]	—		
26.08.2022	—	Chemistry [All Students]		
02.09.2022	Physics [All Students]	_		

Nalanda Open University Annual Exam-2023

Intermediate of Science (I.Sc.), Part-I

Botany, Paper-I

Tin An	ne: 3.00] swer af	Hrs. vy Fiv	ve Questions. Q	uesti	on No.1 is com	pulso	ry.All questions	s carr	Full Marks: 80 y equal marks.
1.	Select	the c	orrect answer in	the fo	llowing question	s:-			
	(i)	Which organelle possesses circular DNA?							
		(a) appa	Chloroplast aratus	(b)	Lysosome	(c)	Ribosome	(d)	Golgi
	(ii)	Eac	h granum possess	ses ho	w many thylakoi	ds?			
		(a)	10-100	(b)	90-93	(c)	19-89	(d)	19-38
	(iii)	The	reaction of Kreb	s cycl	e occurs in:				
		(a)	Cytoplasm	(b)	Mitochondria	(c)	Nucleus	(d)	All of these
	(iv)	CO ₂	acceptor in C ₃ p	lant is	8:				
		(a)	RUDP	(b)	PEP	(c)	PGA	(d)	OAA
	(v)	In se	ome bacteria, the	outer	most layer loose	e sheat	th is called as:		
		(a)	Slime layer	(b)	Capsule	(c)	Cell membrane	(d)	Glycocalyx
	(vi)	Rep	lication of DNA	is bro	ught about by an	enzyı	me called:		
		(a)	Oxidase	(b)	Kinase	(c)	Reductase	(d)	Polymerase
	(vii)	Gen	es are composed	of :					
		(a)	DNA and RNA	(b)	DNA only	(c)	RNA only	(d)	Protein
	(viii)	Lea	f is modified to p	itcher	in :				
		(a)	Nepenthes	(b)	Utricularia	(c)	Dionaea	(d)	Drosera
	(ix)	One	required for chlo	oroph	yll synthesis is:				
		(a)	Fe and Mg	(b)	Fe and Co	(c)	Cu and Ca	(d)	Mg and Ca
	(x)	То у	which family doe	s sunt	flower belong?				
		(a)	Solanaceae	(b)	Brassicaceae	(c)	Fabaceae	(d)	Asteraceae
(xi) The field of Botany concerned with the study of livin					living activities a	nd fur	nction is :		
		(a)	Physiology	(b)	Cytology	(c)	Genetics	(d)	Ecology
	(xii)	In p	lant which one is	respo	onsible for guttati	ion?			
		(a)	Root pressure	(b)	Photosynthesis	(c)	Transpiration	(d)	Osmosis
	(xiii)	The	binomial nomen	clatur	e was proposed b	oy:			
		(a)	Hugo de Vries			(b)	Mendel		
		(c)	Carolus Linnae	us		(d)	Darwin		
	(xiv)	The	transport of sap	from	root to top of dic	ot plaı	nt is:		
		(a)	Transport	(b)	Translocation	(c)	Ascent of sap	(d)	All the above

- (xv) Sweet potato is a modification of :
 - (a) Primary root (b) Leaf
 - (c) Adventitious root (d) Underground root
- (xvi) Which one of the following statement is correct?
 - (a) Some viruses contain DNA and some RNA
 - (b) All viruses contain DNA
 - (c) Viruses do not contain nucleic acid
 - (d) All viruses contain RNA
- 2. Describe the floral characters of the family Solanaceae. Give the floral formula and floral diagram. Also write the botanical name of two plants of economic importance of the family.
- 3. Describe the structure of bacteriophage

Or

Describe the structure and function of Endoplasmic reticulum.

- 4. Write notes on any **two** of the following:
 - (a) Economic importance of Bacteria
 - (b) Mycoplasma
 - (c) Conjugation
 - (d) Vivipary
 - (e) Important cereal crops of Bihar
- 5. Describe the structure and function of lysosome
- 6. Describe the secondary growth in dicot stem.
- 7. Give an account of Calvin cycle.
- 8. Describe prophase I of meiosis.
- 9. Mention the sources of water pollution and suggest the methods of its control.
- 10. Write short notes on any **two** of the following:
 - (a) Prokaryotic cell
 - (b) Stomatal movement
 - (c) Carbon cycle or Green House Effect
 - (d) Cell cycle

$\bullet \bullet \bullet$

Programme of I.Sc. Part-I Counselling and Practical Exam' 2023

Venue : For Botany - 1st Floor, Bio Lab, Biscomaun Tower, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, Biscomaun Tower, Patna

Practical Counselling				
Date	Time			
	09.00 AM to 11.00 AM	11.00 AM to 02.00 PM	02.30 PM to 05.30 PM	
28.03.2023	Botany [All Students] [Biology, Paper-I]	Chemistry [All Students]	Physics [All Students]	

Data	Time		
Date	10.00 AM to 01.00 PM	02.00 PM to 05.00 PM	
31.03.2023	Botany [All Students] [Biology, Paper-I]	Chemistry [All Students]	
01.04.2023	Physics [All Students]		

Nalanda Open University

Annual Exam - 2023 Intermediate of Science (I.Sc.), Part-II Mathematics, Paper-II

Time: 3.00 Hrs.

Full Marks: 80

Answer any *Five* Questions. Question No.1 is compulsory.

All questions carry equal marks.

1. Select the correct answer from the following questions. Each part of the questions carries one mark.

(a)
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^2} \text{ is }:$$
(i) $\frac{1}{2}$ (ii) $-\frac{1}{3}$ (iii) $\frac{1}{3}$ (iv) None of these
(b) $lf(x) - |x|$ then f is continuous at :
(i) origin (ii) at $x = +l$ (iii) $x = -1$ (iv) None of these
(c) If $x > 0, y > 0$ and $xy = 1$, then the minimum value of $x + y$ is :
(i) 1 (ii) $\frac{1}{2}$ (iii) 4 (iv) None of these
(d)
$$\lim_{x\to 0} \frac{1}{x} \frac{1}{x^2} \text{ is }:$$
(i) $e^{\frac{1}{3}}$ (ii) $e^{\frac{1}{2}}$ (iii) e (iv) None of these
(e) $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} dx$ is :
(i) $\frac{1}{2}$ (ii) 2 (iii) $\frac{1}{2}$ (iii) $\frac{1}{2}$ (iii) $\frac{1}{2}$ (iv) None of these
(f) $lfx = a(t + \sin t), y = a(l - \cos t)$ then $\frac{dy}{dx}$ is :
(i) $\frac{1}{\sqrt{x}} dx$ is equal to:
(i) $-1\cos \sqrt{x}$ (ii) $2\cos \sqrt{x}$ (iii) $\cos \sqrt{x}$ (iv) None of these
(g) The order and degree of the differential equation $\frac{d^2y}{dx^2} = \sqrt{1 + (\frac{dy}{dx})^2}$ is :
(i) $-1\cos \sqrt{x}$ (ii) $2\cos \sqrt{x}$ (iii) $\cos \sqrt{x}$ (iv) None of these
(j) The function $f(x) = 2x^3 + 21x^2 - 60x + 41$ is strictly positive in the interval :
(i) $(-1, \infty)$ (ii) $(1, 2)$ (iii) $(1, \infty)$ (iv) None of these
(j) The area bounded by the curve $y = x, x - axis and the ordinates $x = -l, x = 2$ is :
(i) $\frac{5}{2}xq$ units (ii) $\frac{1}{2}xq$ units (iii) $\frac{3}{2}xq$ units (iv) None of these
(k) The rate of change of area of a circle with respect to the radius r at $r = 6$ cm is :
(i) 12π cm (ii) 11π cm (iii) 10π cm (iv) None of these
(j) The solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ is :
(i) $y - x = c(1 + xy)$ (ii) $x - y = c(1 + xy)$ (iii) $y - x = c(1 - xy)$ (iv) None of these
(m) If $\left| \ddot{a} + \ddot{b} \right| = \left| \vec{a} - \vec{b} \right|$ then the angle between \vec{a} and \vec{b} is :$

(i) 30° (ii) 60° (iii) 90° (iv) None of these

See Back Page

- If A is a square matrix such that $A^2 = A$ then $(1 + A)^3 7A$ is equal to : (n) (ii) 1 – A (iii) 1 (iv) None of these (i) A If three vectors $\vec{i} - \vec{j} + \vec{k}$, $2\vec{i} + \vec{j} - \vec{k}$ and $\lambda\vec{i} - \vec{j} + \vec{k}$ are co-planar, then the value of λ is: (0)(iv) None of these (iii) *3* (ii) 2A bag contains 9 red, 4 black, 7 white balls. The probability that a ball drawn is not (p) black is : $\frac{13}{20}$ (iii) $\frac{11}{20}$ (ii) $\frac{16}{20}$ (i) (iv) None of these 2. If $f(x) = \begin{cases} x-1 & when \quad x < 0 \\ \frac{1}{4} & when \quad x = 0, \text{ then discuss the continuity of } f(x) \text{ at } x = 0. \\ x^2 & when \quad x > 0 \end{cases}$ 3. If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$ then show that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$. (a) Prove that the maximum value of $\left(\frac{1}{r}\right)^{n}$ is $e^{\frac{1}{e}}$. 4. (b) Find the interval of monotonicity of $x \log_{e}^{x}$. Evaluate: (i) $\int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x \, dx}{\sin x + \cos x}$ (ii) $\int_{0}^{a} \sqrt{a^2 - x^2} \, dx$
Evaluate: (i) $\int \frac{dx}{4 + 5Cosx}$ (ii) $\int \frac{dx}{x^2 + 5x + 6}$ 5. 6. Find the area included between the curves $x^2 = 4y$ and $y^2 = 4x$. 7. (i) $\frac{dy}{dx} = \frac{3x - 4y + 2}{4x - 5y + 3}$ (ii) $\left(\frac{dy}{dx}\right)^2 - (e^{-x} + e^x)\frac{dy}{dx} + 1 = 0$ Solve : 8. Solve (i) $\frac{dy}{dx} + \frac{y}{x} = e^x (x > 0)$ (ii) $(x^2 + xy)dy = (x^2 + y^2) dx$. 9.
- 10. (i) Find the sine of the angle between the vectors $\vec{a} = 2\vec{i} \vec{j} + 3\vec{k}$; $\vec{b} = \vec{i} + 3\vec{j} + 2\vec{k}$. (ii) Prove that : $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$.

Programme of I.Sc. Part-II Practical Counselling and Practical Exam' 2023

Venue : For Zoology - 1st Floor, Bio Lab, BiscomaunTower, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, BiscomaunTower, Patna

Practical Counselling

Data	Time			
Dale	10.30 AM to 1.30 PM	2.00 PM to 5.00 PM		
12.04.2023	Chemistry [All Students]	Zoology [Biology, Paper-II] [All Students]		
13.04.2023	Physics [All Students]			

Data	Time			
Dale	11.00 AM to 2.00 PM	2.30 PM to 5.30 PM		
13.04.2023	—	Zoology [Biology, Paper-II] [All Students]		
15.04.2023	Chemistry [All Students]	Physics [All Students]		

NALANDA OPEN UNIVERSITY
Intermediate of Science (I.Sc.), Part-II
Chemistry Daner-II

Chemistry, Paper-II Annual Examination, 2023

Time	e: 3.00	Hrs.				Full
			Answer <i>Five</i> Questions in all, selection Question No.1 is comp	ng atle ulsory.	ast Two Questions from each Group. All questions carry equal marks.	
1.	Choo	se th	e correct answer in the following	g :-		
	(i)	Туре	e of hybridisation of carbon in et	hane	is :—	
		(a)	SP ³	(b)	SP ²	
		(c)	SP	(d)	SP ³ d	
	(ii)	Most	electronegative element is :—			
		(a)	Li	(b)	Na	
		(c)	К	(d)	Са	
	(iii)	CH₃C	OCH_3 and CH_3 CH_2 OH are isome	rs :—		
		(a)	Position	(b)	Chain	
		(c)	Functional	(d)	Metamers	
	(iv)	IUPA	AC name of $CH_3 - CH = CH - C$	≡ CH	/ : 	
		(a)	Pent-3-ene-1-yne	(b)	Pent-4-yne-2-ene	
		(c)	Pent-1-yne-3-ene	(d)	But-1-ene-3-yne	
	(v)	Whic	h of the following is not electro	philic	:-	
		(a)	BF ₃	(b)	Cu ²⁺	
		(c)	AICI ₃	(d)	NH ₃	
	(vi)	The Compound				
		(a)	Hexyl benzene	(b)	Cyclohexyl benzene	
		(c)	Phenyl benzene	(d)	Cyclopentyl benzene	
	(vii)	Whic	ch exhibits position isomerism?			
		(a)	Alkanes	(b)	Alkenes	
		(c)	Aldehydes	(d)	Mono carboxylic acid	
(viii		No. of π -bonds in $CH_3 - CH = CH - C \equiv C - H$ is :—				
		(a)	3	(b)	1	
		(c)	2	(d)	4	
			GR	OUP	- A	
2.	Expla	ain the	e following :—			

- (a) Hess Law of constant Heat summation
- (b) First Law of Thermodynamics

3. Explain the following :—

- (a) Internal Energy
- (b) Bond Energy
- (c) Intensive and Extensive property
- 4. Write notes on any *Two* of the following :—
 - (a) Heat of Neutralisation
 - (b) Entropy
 - (c) second Law of Thermodynamics
- 5. What is Law of mass action ? Explain common ion effect with examples.

Full Marks: 80

GROUP - B

- 6. Write short notes on any *Two* of the following :—
 - (a) Inductive effects
 - (b) Electromeric effect
 - (c) Metamerism
- 7. (a) What is Alcohol ?
 - (b) Write two differences between Primary, Secondary and Tertiary alcohol.
 - (c) Write the reaction of the following with $C_2 H_5 OH :=$
 - (i) Pcl_5 (ii) $Socl_2$ (iii) H_2SO_4

8. Give the reason :—

- (a) Phenol is stronger acid than ethyl alcohol.
- (b) Formic acid is more acidic than acetic acid.
- (c) Methyl amine is more basic than Ammonia.
- (d) Dimethyl amine is more basic than trimethyl amine.
- 9. How will you convert :--
 - (a) Methane to ethane.
 - (b) Ethyl Iodide to ethyl alcohol.
 - (c) Ethyl alcohol to ethene.
 - (d) Ethyl alcohol to ethenoic acd.
- 10. (a) Write a difference between primary, secondary and tertiary amine on the basis of chemical reaction.
 - (b) How Benzene is prepared by cyclic polymerization ?

Programme of I.Sc. Part-II Practical Counselling and Practical Exam' 2023

Venue : For Zoology - 1st Floor, Bio Lab, BiscomaunTower, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, BiscomaunTower, Patna

Practical Counselling

Data	Time			
Dale	10.30 AM to 1.30 PM	2.00 PM to 5.00 PM		
12.04.2023	Chemistry [All Students]	Zoology [Biology, Paper-II] [All Students]		
13.04.2023	Physics [All Students]	_		

Data	Time			
Date	11.00 AM to 2.00 PM	2.30 PM to 5.30 PM		
13.04.2023	_	Zoology [Biology, Paper-II] [All Students]		
15.04.2023	Chemistry [All Students]	Physics [All Students]		

			NALANDA Intermediate of Zoolo Annual	OPEN Scier ogy, Pa	I UNIVERSITY nce (I.Sc.), Part-II aper-II ation. 2023
Time	: 3.00	Hrs. Ans	swer any <i>Five</i> Questions. Question N	lo.1 is co	Fu mpulsory. All questions carry equal marks.
1.	Multij (i)	ple Cł How (a) (c)	noice questions. Each question many pairs of cranial nerves Twelve Eleven	n carrie are foui (b) (d)	s two marks. nd in rabbit: Ten Nine
	(ii)	Mam (a) (c)	malian heart is: 2 - chambered 4 - chambered	(b) (d)	Single chambered 3 -chambered
	(iii)	Theo (a) (c)	ory of natural selection was giv Wallace Darwin	ven by: (b) (d)	Weismann Lamark
	(iv)	Whic (a) (c)	h of the following endocrine o Thyroid Islets of Langerhans	glands s (b) (d)	secrete glucagon: Pituitary Adrenal
	(v)	Sync (a) (c)	ytial epidermis if found in: Ascaris Housefly	(b) (d)	Metaphire Periplaneta
	(vi)	Asca (a) (c)	ris lumbricoides is found in th Pig Monkey	e intest (b) (d)	ine of: Homo sapiens Goat and sheep
	(vii)	Gluco (a) (c)	ose is stored as glycogen in: Intestine Kidney	(b) (d)	Liver Spleen
	(viii)	Leyd (a) (c)	ig cells are found in: Ovary Testis	(b) (d)	Alkenes Vasdeferens
2.	Desci	ribe tl	he structure and function of D	NA.	
3.	Give an account of the ultrastructure and function of mitochondria.				
4.	Classify phylum porifera up to classes with characters & examples.				
5.	Desci	ribe tl	he structure and classification	of carb	oohydrates.
6.	Give	an ac	count of mouth parts of Cock	roach.	
7.	Describe the structure and function of Thyroid gland.				

- 8. Write an essay on Variation.
- 9. Describe the respiratory system of Frog.
- 10. Write notes on any **two** of the following:
 - (a) Natural selection (b) Kala-azar
 - (c) Conjugation in paramecium (d) Gametogenesis
 - *****

Full Marks: 80

Programme of I.Sc. Part-II Practical Counselling and Practical Exam' 2023

Venue : For Zoology - 1st Floor, Bio Lab, BiscomaunTower, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, BiscomaunTower, Patna

Fractical Counselling				
Dete	Time			
Dale	10.30 AM to 1.30 PM	2.00 PM to 5.00 PM		
12.04.2023	Chemistry [All Students]	Zoology [Biology, Paper-II] [All Students]		
13.04.2023	Physics [All Students]	—		

Practical Counselling

Data	Time		
Date	11.00 AM to 2.00 PM	2.30 PM to 5.30 PM	
13.04.2023	_	Zoology [Biology, Paper-II] [All Students]	
15.04.2023	Chemistry [All Students]	Physics [All Students]	

Nalanda Open University

Annual Exam - 2023

Intermediate of Science (I.Sc.), Part-II

Physics, Paper-II

Time: 3.00 Hrs.

1.

Full Marks: 80

Answer any *Five* Questions. Question No.1 is compulsory. All questions carry equal marks.

- Select the correct option in each of the following. Each question carries 1 mark. (i)
 - If the angle of incidence in less than its limiting value, then rays are : (b) partially refracted
 - (a) partially reflected
- (c) totally reflected (d) totally refracted If focal length (*f*) is in cm., then power is expressed as (ii)
 - $\frac{1000}{f}$ $\frac{100}{f}$ (c) (d) (a) (b) *f*
- If the sign and radius of curvature of both side of a lens is the same, what will be its (iii) power:

(a) Infinite (b)
$$\frac{1}{f}$$
 (c) f (d) None of these

(iv) If D and f are the least distance of distinct vision and the focal length, respectively, then the magnifying power of a glass is :

(a)
$$1 + \frac{D}{f}$$
 (b) $\frac{D}{f}$ (c) $1 - \frac{D}{f}$ (d) $\frac{f}{D}$

The sources are called coherent if they produce waves : (vi)

- (a) of equal wavelength (b) of equal velocity
- (d) having constant phase difference (c) having same shape

(vii) The number of fringes formed due to interference and diffraction are : (a) same

- (b) larger in interference
- (c) larger in diffraction (d) lesser in interference
- (viii) Unit pole in S.I. unit is that pole which when placed at a distance of 1 meter from a similar pole is repelled by a force of : (a) 10^{-7} weber/amp (b) 10^{-7} henery (c) 10^{-7} N (d) 10^{-7} N/A^2
- (ix) If a magnet is suspended freely in a uniform magnetic field, then its time period is :

	(a) $\frac{I}{MD}$ (b) $2\pi \frac{\sqrt{I}}{MB}$	(c)	$2\pi\sqrt{rac{I}{MB}}$	(d) $2\pi \sqrt{\frac{MB}{I}}$
(x)	1 coulomb is equal to			
	(a) 1 ab coulomb	(b)	1×10^9 stat could	lomb
	(c) 3×10^{10} stat coulomb	(d)	None of these	
(xi)	Magnetic meridian is :			
	(a) a point	(b)	a horizontal line	2
	(c) a line along north-south	(d)	a vertical line	
(xii)	A uniform wire of 50Ω is cut into	5 equal p	arts. It is than	connected in parallel
	connection. The equivalent resistance is	5		_
	(a) 250Ω (b) 2Ω	(c)	10Ω (d) 6250Ω

(a) towards right (b) towards left (c) upward (d) downward

- (xiv) If the current is doubled, the deflection is also doubled in :
 - (a) a tangent galvanometer (b) a moving coil galvanometer
 - (c) both (d) None
- (xv) The K.E. of an electron of charge e moving round the nucleus of radius r is :

(a)
$$\frac{Ze^2}{4\pi\varepsilon_0 r^2}$$
 (b) $\frac{Ze^2}{4\pi\varepsilon_0 r}$ (c) $\frac{Ze^2}{8\pi\varepsilon_0 r}$ (d) $\frac{Ze^2}{8\pi\varepsilon_0 r^2}$

- (xvi) A de-Brogli wave associated with a particle of mass *m* and velocity *v* has a wavelength equal to :
 - (a) h/mv (b) m^{ν}/h (c) hmv (d) C
- 2. Derive Snell's law of refraction on the basis of wave theory of light.

3. Establish the relation
$$\mu = Sin \frac{A + \delta m}{2} / Sin \frac{A}{2}$$
.

- 4. Discuss deviation without dispersion and dispersion without deviation produced by a combination of prisms.
- 5. State and explain Gauss law. Find electric field near an infinite plane sheet of charge having uniform surface charge density.
- 6. State and explain Kirchoff's laws and Their application to find the balanced condition of wheat stone bridge.
- 7. Describe the construction and action of a moving coil galvano meter. Explain how it can be converted into a ammeter?
- 8. What is a *p*-*n* junction ? Define its dynamic resistance.
- 9. Give Einstein theory to explain photoelectric effect. Explain threshold rectifier of alternating wave.
- 10. What is Bohr's model of atom? Discuss the model to explain the series spectra of Hydrogen atom.

Programme of I.Sc. Part-II Practical Counselling and Practical Exam' 2023

Venue : For Zoology - 1st Floor, Bio Lab, BiscomaunTower, Patna For Chemistry - 4th Floor, Chemistry Lab, Biscomaun Bhawan, Patna For Physics - 1st Floor, Physics Lab, BiscomaunTower, Patna

Practical Counselling						
Data	Time					
Date	10.30 AM to 1.30 PM	2.00 PM to 5.00 PM				
12.04.2023	Chemistry	Zoology [Biology, Paper-II]				
	[All Students]	[All Students]				
13.04.2023	Physics					
	[All Students]	—				

Data	Time		
Date	11.00 AM to 2.00 PM	2.30 PM to 5.30 PM	
13.04.2023	_	Zoology [Biology, Paper-II] [All Students]	
15.04.2023	Chemistry	Physics	
	[All Students]	[All Students]	